IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v328y2022ics0306261922013149.html
   My bibliography  Save this article

Preparation and solar thermochemical properties analysis of NiFe2O4@SiC/ @Si3N4 for high-performance CO2-splitting

Author

Listed:
  • Jiang, Boshu
  • Guene Lougou, Bachirou
  • Zhang, Hao
  • Geng, Boxi
  • Wu, Lianxuan
  • Shuai, Yong

Abstract

The solar-driven thermochemical CO2-to-CO conversion is an effective way to achieve the mission of carbon peaking and carbon neutrality. However, synthesizing porous reacting materials with excellent thermal stability, hardness and long-term cyclic stability, oxygen exchange capacity, and higher CO2-to-CO conversion are the most important challenges associated with the thermochemical CO2-splitting approach and technological upscaling to large-scale applications. This study presented the development of NiFe2O4 oxygen carriers, the synthesis method of SiC and Si3N4 supports, and solar-to-fuel processing of the newly prepared materials through CO2-splitting under a highly concentrated solar radiative heat flux. The newly synthesized NiFe2O4@SiC porous redox material resulted in higher solar energy absorption and CO2 conversion capability with an instantaneous CO production of 410 μmol/g and direct CO2-to-CO conversion rate of 18.1 % at 1073–1273 K reaction temperature. The media composite of NiFe2O4@SiC exhibited high-temperature thermal changes, good thermochemical reaction stability, and a higher CO production rate through six redox cycles compared to NiFe2O4@Si3N4 porous reacting material. The high oxidation potential and remarkably solar radiative heat flux absorption and thermochemical CO2-splitting capacities of the newly developed materials were demonstrated through experimental analysis. The synergistic effect of the oxygen carriers (NiFe2O4) and substrate materials including SiC and Si3N4 skeletons for CO2-splitting is highlighted. This study provided comprehensive and novel experimental insights that can be used as guidance for theoretical research and application in CO2 conversion into high-value-added energy products.

Suggested Citation

  • Jiang, Boshu & Guene Lougou, Bachirou & Zhang, Hao & Geng, Boxi & Wu, Lianxuan & Shuai, Yong, 2022. "Preparation and solar thermochemical properties analysis of NiFe2O4@SiC/ @Si3N4 for high-performance CO2-splitting," Applied Energy, Elsevier, vol. 328(C).
  • Handle: RePEc:eee:appene:v:328:y:2022:i:c:s0306261922013149
    DOI: 10.1016/j.apenergy.2022.120057
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261922013149
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2022.120057?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wang, Fuqiang & Shi, Xuhang & Zhang, Chuanxin & Cheng, Ziming & Chen, Xue, 2020. "Effects of non-uniform porosity on thermochemical performance of solar driven methane reforming," Energy, Elsevier, vol. 191(C).
    2. Gao, Yibo & Mao, Yanpeng & Song, Zhanlong & Zhao, Xiqiang & Sun, Jing & Wang, Wenlong & Chen, Guifang & Chen, Shouyan, 2020. "Efficient generation of hydrogen by two-step thermochemical cycles: Successive thermal reduction and water splitting reactions using equal-power microwave irradiation and a high entropy material," Applied Energy, Elsevier, vol. 279(C).
    3. Graves, Christopher & Ebbesen, Sune D. & Mogensen, Mogens & Lackner, Klaus S., 2011. "Sustainable hydrocarbon fuels by recycling CO2 and H2O with renewable or nuclear energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(1), pages 1-23, January.
    4. Remo Schäppi & David Rutz & Fabian Dähler & Alexander Muroyama & Philipp Haueter & Johan Lilliestam & Anthony Patt & Philipp Furler & Aldo Steinfeld, 2022. "Drop-in fuels from sunlight and air," Nature, Nature, vol. 601(7891), pages 63-68, January.
    5. Haeussler, Anita & Abanades, Stéphane & Julbe, Anne & Jouannaux, Julien & Cartoixa, Bruno, 2020. "Solar thermochemical fuel production from H2O and CO2 splitting via two-step redox cycling of reticulated porous ceria structures integrated in a monolithic cavity-type reactor," Energy, Elsevier, vol. 201(C).
    6. Guene Lougou, Bachirou & Shuai, Yong & Zhang, Hao & Ahouannou, Clément & Zhao, Jiupeng & Kounouhewa, Basile Bruno & Tan, Heping, 2020. "Thermochemical CO2 reduction over NiFe2O4@alumina filled reactor heated by high-flux solar simulator," Energy, Elsevier, vol. 197(C).
    7. Davenport, Timothy C. & Yang, Chih-Kai & Kucharczyk, Christopher J. & Ignatowich, Michael J. & Haile, Sossina M., 2016. "Maximizing fuel production rates in isothermal solar thermochemical fuel production," Applied Energy, Elsevier, vol. 183(C), pages 1098-1111.
    8. Shuai, Yong & Zhang, Hao & Guene Lougou, Bachirou & Jiang, Boshu & Mustafa, Azeem & Wang, Chi-Hwa & Wang, Fuqiang & Zhao, Jiupeng, 2021. "Solar-driven thermochemical redox cycles of ZrO2 supported NiFe2O4 for CO2 reduction into chemical energy," Energy, Elsevier, vol. 223(C).
    9. Pan, Z.H. & Zhao, C.Y., 2017. "Gas–solid thermochemical heat storage reactors for high-temperature applications," Energy, Elsevier, vol. 130(C), pages 155-173.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Guo, Yongpeng & Chen, Jing & Song, Hualong & Zheng, Ke & Wang, Jian & Wang, Hongsheng & Kong, Hui, 2024. "A review of solar thermochemical cycles for fuel production," Applied Energy, Elsevier, vol. 357(C).
    2. Guene Lougou, Bachirou & Wu, Lianxuan & Ma, Danni & Geng, Boxi & Jiang, Boshu & Han, Donmei & Zhang, Hao & Łapka, Piotr & Shuai, Yong, 2023. "Efficient conversion of solar energy through a macroporous ceramic receiver coupling heat transfer and thermochemical reactions," Energy, Elsevier, vol. 271(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Guo, Yongpeng & Chen, Jing & Song, Hualong & Zheng, Ke & Wang, Jian & Wang, Hongsheng & Kong, Hui, 2024. "A review of solar thermochemical cycles for fuel production," Applied Energy, Elsevier, vol. 357(C).
    2. Guene Lougou, Bachirou & Wu, Lianxuan & Ma, Danni & Geng, Boxi & Jiang, Boshu & Han, Donmei & Zhang, Hao & Łapka, Piotr & Shuai, Yong, 2023. "Efficient conversion of solar energy through a macroporous ceramic receiver coupling heat transfer and thermochemical reactions," Energy, Elsevier, vol. 271(C).
    3. Shuai, Yong & Zhang, Hao & Guene Lougou, Bachirou & Jiang, Boshu & Mustafa, Azeem & Wang, Chi-Hwa & Wang, Fuqiang & Zhao, Jiupeng, 2021. "Solar-driven thermochemical redox cycles of ZrO2 supported NiFe2O4 for CO2 reduction into chemical energy," Energy, Elsevier, vol. 223(C).
    4. Yadav, Deepak & Banerjee, Rangan, 2022. "Thermodynamic and economic analysis of the solar carbothermal and hydrometallurgy routes for zinc production," Energy, Elsevier, vol. 247(C).
    5. Stéphane Abanades, 2022. "Redox Cycles, Active Materials, and Reactors Applied to Water and Carbon Dioxide Splitting for Solar Thermochemical Fuel Production: A Review," Energies, MDPI, vol. 15(19), pages 1-28, September.
    6. Shi, Xuhang & Li, Chunzhe & Yang, Zhenning & Xu, Jie & Song, Jintao & Wang, Fuqiang & Shuai, Yong & Zhang, Wenjing, 2024. "Egg-tray-inspired concave foam structure on pore-scale space radiation regulation for enhancing photo-thermal-chemical synergistic conversion," Energy, Elsevier, vol. 297(C).
    7. Wang, Bo & Li, Xian & Zhu, Xuancan & Wang, Yuesen & Tian, Tian & Dai, Yanjun & Wang, Chi-Hwa, 2023. "An epitrochoidal rotary reactor for solar-driven hydrogen production based on the redox cycling of ceria: Thermodynamic analysis and geometry optimization," Energy, Elsevier, vol. 270(C).
    8. Zhang, Hao & Shuai, Yong & Lougou, Bachirou Guene & Jiang, Boshu & Yang, Dazhi & Pan, Qinghui & Wang, Fuqiang & Huang, Xing, 2022. "Effects of foam structure on thermochemical characteristics of porous-filled solar reactor," Energy, Elsevier, vol. 239(PC).
    9. Alvarez Rivero, M. & Rodrigues, D. & Pinheiro, C.I.C. & Cardoso, J.P. & Mendes, L.F., 2022. "Solid–gas reactors driven by concentrated solar energy with potential application to calcium looping: A comparative review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    10. Géremi Gilson Dranka & Paula Ferreira, 2020. "Electric Vehicles and Biofuels Synergies in the Brazilian Energy System," Energies, MDPI, vol. 13(17), pages 1-22, August.
    11. Pellegrino, Sandro & Lanzini, Andrea & Leone, Pierluigi, 2017. "Greening the gas network – The need for modelling the distributed injection of alternative fuels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 266-286.
    12. Bergthorson, Jeffrey M. & Thomson, Murray J., 2015. "A review of the combustion and emissions properties of advanced transportation biofuels and their impact on existing and future engines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 1393-1417.
    13. Becker, W.L. & Braun, R.J. & Penev, M. & Melaina, M., 2012. "Production of Fischer–Tropsch liquid fuels from high temperature solid oxide co-electrolysis units," Energy, Elsevier, vol. 47(1), pages 99-115.
    14. Rahul R. Bhosale, 2023. "Recent Developments in Ceria-Driven Solar Thermochemical Water and Carbon Dioxide Splitting Redox Cycle," Energies, MDPI, vol. 16(16), pages 1-30, August.
    15. Abanades, Stéphane & André, Laurie, 2018. "Design and demonstration of a high temperature solar-heated rotary tube reactor for continuous particles calcination," Applied Energy, Elsevier, vol. 212(C), pages 1310-1320.
    16. Ganesh, Ibram, 2016. "Electrochemical conversion of carbon dioxide into renewable fuel chemicals – The role of nanomaterials and the commercialization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 1269-1297.
    17. Mathiesen, B.V. & Lund, H. & Connolly, D. & Wenzel, H. & Østergaard, P.A. & Möller, B. & Nielsen, S. & Ridjan, I. & Karnøe, P. & Sperling, K. & Hvelplund, F.K., 2015. "Smart Energy Systems for coherent 100% renewable energy and transport solutions," Applied Energy, Elsevier, vol. 145(C), pages 139-154.
    18. Connolly, D. & Lund, H. & Mathiesen, B.V., 2016. "Smart Energy Europe: The technical and economic impact of one potential 100% renewable energy scenario for the European Union," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 1634-1653.
    19. Nzihou, Ange & Flamant, Gilles & Stanmore, Brian, 2012. "Synthetic fuels from biomass using concentrated solar energy – A review," Energy, Elsevier, vol. 42(1), pages 121-131.
    20. Stefano Padula & Claudio Tregambi & Maurizio Troiano & Almerinda Di Benedetto & Piero Salatino & Gianluca Landi & Roberto Solimene, 2022. "Chemical Looping Reforming with Perovskite-Based Catalysts for Thermochemical Energy Storage," Energies, MDPI, vol. 15(22), pages 1-15, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:328:y:2022:i:c:s0306261922013149. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.