Effects of compression ratio on the combustion and emission of a hydrogen enriched natural gas engine under different excess air ratio
Author
Abstract
Suggested Citation
DOI: 10.1016/j.energy.2013.07.033
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Poompipatpong, Chedthawut & Cheenkachorn, Kraipat, 2011. "A modified diesel engine for natural gas operation: Performance and emission tests," Energy, Elsevier, vol. 36(12), pages 6862-6866.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Hassan Sadah Muhssen & Máté Zöldy & Ákos Bereczky, 2024. "A Comprehensive Review on the Hydrogen–Natural Gas–Diesel Tri-Fuel Engine Exhaust Emissions," Energies, MDPI, vol. 17(15), pages 1-32, August.
- Gong, Changming & Liu, Fenghua & Sun, Jingzhen & Wang, Kang, 2016. "Effect of compression ratio on performance and emissions of a stratified-charge DISI (direct injection spark ignition) methanol engine," Energy, Elsevier, vol. 96(C), pages 166-175.
- Colmenar-Santos, Antonio & Zarzuelo-Puch, Gloria & Borge-Diez, David & García-Diéguez, Concepción, 2016. "Thermodynamic and exergoeconomic analysis of energy recovery system of biogas from a wastewater treatment plant and use in a Stirling engine," Renewable Energy, Elsevier, vol. 88(C), pages 171-184.
- Chintala, V. & Subramanian, K.A., 2015. "Experimental investigations on effect of different compression ratios on enhancement of maximum hydrogen energy share in a compression ignition engine under dual-fuel mode," Energy, Elsevier, vol. 87(C), pages 448-462.
- Gong, Changming & Li, Dong & Liu, Jiajun & Liu, Fenghua, 2024. "Numerical evaluation of ignition timing influences on performance of a stratified-charge H2/methanol dual-injection automobile engine under lean-burn condition," Energy, Elsevier, vol. 290(C).
- Bum Youl Park & Ki-Hyung Lee & Jungsoo Park, 2020. "Conceptual Approach on Feasible Hydrogen Contents for Retrofit of CNG to HCNG under Heavy-Duty Spark Ignition Engine at Low-to-Middle Speed Ranges," Energies, MDPI, vol. 13(15), pages 1-16, July.
- Farhan, Muhammad & Chen, Tianhao & Rao, Anas & Shahid, Muhammad Ihsan & Xiao, Qiuhong & Liu, Yongzheng & Ma, Fanhua, 2024. "Performance, emissions and combustion analysis of hydrogen-enriched compressed natural gas spark ignition engine by optimized Gaussian process regression and neural network at low speed on different l," Energy, Elsevier, vol. 302(C).
- Su, Teng & Ji, Changwei & Wang, Shuofeng & Shi, Lei & Yang, Jinxin & Cong, Xiaoyu, 2017. "Investigation on performance of a hydrogen-gasoline rotary engine at part load and lean conditions," Applied Energy, Elsevier, vol. 205(C), pages 683-691.
- Kumar, T. Sathish & Ashok, B., 2021. "Critical review on combustion phenomena of low carbon alcohols in SI engine with its challenges and future directions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
- Mehra, Roopesh Kumar & Duan, Hao & Juknelevičius, Romualdas & Ma, Fanhua & Li, Junyin, 2017. "Progress in hydrogen enriched compressed natural gas (HCNG) internal combustion engines - A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 1458-1498.
- Wang, Shuofeng & Ji, Changwei & Zhang, Bo & Cong, Xiaoyu & Liu, Xiaolong, 2016. "Effect of CO2 dilution on combustion and emissions characteristics of the hydrogen-enriched gasoline engine," Energy, Elsevier, vol. 96(C), pages 118-126.
- Chen, Zheng & Zhang, Fan & Xu, Boya & Zhang, Quanchang & Liu, Jingping, 2017. "Influence of methane content on a LNG heavy-duty engine with high compression ratio," Energy, Elsevier, vol. 128(C), pages 329-336.
- Gong, Changming & Li, Zhaohui & Sun, Jingzhen & Liu, Fenghua, 2020. "Evaluation on combustion and lean-burn limitof a medium compression ratio hydrogen/methanol dual-injection spark-ignition engine under methanol late-injection," Applied Energy, Elsevier, vol. 277(C).
- Duan, Xiongbo & Li, Yangyang & Liu, Jingping & Guo, Genmiao & Fu, Jianqin & Zhang, Quanchang & Zhang, Shiheng & Liu, Weiqiang, 2019. "Experimental study the effects of various compression ratios and spark timing on performance and emission of a lean-burn heavy-duty spark ignition engine fueled with methane gas and hydrogen blends," Energy, Elsevier, vol. 169(C), pages 558-571.
- Gong, Changming & Yi, Lin & Zhang, Zilei & Sun, Jingzhen & Liu, Fenghua, 2020. "Assessment of ultra-lean burn characteristics for a stratified-charge direct-injection spark-ignition methanol engine under different high compression ratios," Applied Energy, Elsevier, vol. 261(C).
- Pandey, Jayashish Kumar & Kumar, G.N., 2022. "Effect of variable compression ratio and equivalence ratio on performance, combustion and emission of hydrogen port injection SI engine," Energy, Elsevier, vol. 239(PE).
- Di Iorio, Silvana & Sementa, Paolo & Vaglieco, Bianca Maria, 2016. "Analysis of combustion of methane and hydrogen–methane blends in small DI SI (direct injection spark ignition) engine using advanced diagnostics," Energy, Elsevier, vol. 108(C), pages 99-107.
- Tan, Dongli & Meng, Yujun & Tian, Jie & Zhang, Chengtao & Zhang, Zhiqing & Yang, Guanhua & Cui, Shuwan & Hu, Jingyi & Zhao, Ziheng, 2023. "Utilization of renewable and sustainable diesel/methanol/n-butanol (DMB) blends for reducing the engine emissions in a diesel engine with different pre-injection strategies," Energy, Elsevier, vol. 269(C).
- Gong, Changming & Li, Dong & Liu, Jiajun & Liu, Fenghua, 2024. "Computational study of excess air ratio impacts on performances of a spark-ignition H2/methanol dual-injection engine," Energy, Elsevier, vol. 289(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Abu-Jrai, Ahmad M. & Al-Muhtaseb, Ala'a H. & Hasan, Ahmad O., 2017. "Combustion, performance, and selective catalytic reduction of NOx for a diesel engine operated with combined tri fuel (H2, CH4, and conventional diesel)," Energy, Elsevier, vol. 119(C), pages 901-910.
- Li, Weifeng & Liu, Zhongchang & Wang, Zhongshu, 2016. "Experimental and theoretical analysis of the combustion process at low loads of a diesel natural gas dual-fuel engine," Energy, Elsevier, vol. 94(C), pages 728-741.
- Hotta, Santosh Kumar & Sahoo, Niranjan & Mohanty, Kaustubha & Kulkarni, Vinayak, 2020. "Ignition timing and compression ratio as effective means for the improvement in the operating characteristics of a biogas fueled spark ignition engine," Renewable Energy, Elsevier, vol. 150(C), pages 854-867.
- Xi, Haoran & Fu, Jianqin & Zhou, Feng & Yu, Juan & Liu, Jingping & Meng, Zhongwei, 2023. "Experimental and numerical studies of thermal power conversion and energy flow under high-compression ratios of a liquid methane engine (LME)," Energy, Elsevier, vol. 284(C).
- Geng, Peng & Cao, Erming & Tan, Qinming & Wei, Lijiang, 2017. "Effects of alternative fuels on the combustion characteristics and emission products from diesel engines: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 523-534.
- Li, Menghan & Zhang, Qiang & Li, Guoxiang & Shao, Sidong, 2015. "Experimental investigation on performance and heat release analysis of a pilot ignited direct injection natural gas engine," Energy, Elsevier, vol. 90(P2), pages 1251-1260.
- Zhen, Xudong & Wang, Yang, 2015. "Numerical analysis on original emissions for a spark ignition methanol engine based on detailed chemical kinetics," Renewable Energy, Elsevier, vol. 81(C), pages 43-51.
- Li, Menghan & Zhang, Qiang & Liu, Xiaori & Ma, Yuxian & Zheng, Qingping, 2018. "Soot emission prediction in pilot ignited direct injection natural gas engine based on n-heptane/toluene/methane/PAH mechanism," Energy, Elsevier, vol. 163(C), pages 660-681.
- Poompipatpong, Chedthawut & Kengpol, Athakorn, 2015. "Design of a decision support methodology using response surface for torque comparison: An empirical study on an engine fueled with waste plastic pyrolysis oil," Energy, Elsevier, vol. 82(C), pages 850-856.
- Zhang, Qiang & Li, Menghan & Li, Guoxiang & Shao, Sidong & Li, Peixin, 2017. "Transient emission characteristics of a heavy-duty natural gas engine at stoichiometric operation with EGR and TWC," Energy, Elsevier, vol. 132(C), pages 225-237.
More about this item
Keywords
Compression ratio; HCNG; Excess air ratio; Emission;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:59:y:2013:i:c:p:658-665. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.