IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v113y2014icp1068-1076.html
   My bibliography  Save this article

Experimental study of the performance and emission characteristics of an adapted commercial four-cylinder spark ignition engine running on hydrogen–methane mixtures

Author

Listed:
  • Diéguez, P.M.
  • Urroz, J.C.
  • Marcelino-Sádaba, S.
  • Pérez-Ezcurdia, A.
  • Benito-Amurrio, M.
  • Sáinz, D.
  • Gandía, L.M.

Abstract

The use of hydrogen/methane mixtures with low methane contents as fuels for internal combustion engines (ICEs) may help to speed up the development of the hydrogen energy market and contribute to the decarbonization of the transportation sector. In this work, a commercial 1.4L four-cylinder Volkswagen spark-ignition engine previously adapted to operate on pure hydrogen has been fueled with hydrogen/methane mixtures with 5–20 vol.% methane (29.6–66.7wt.%). An experimental program has been executed by varying the fuel composition, air-to-fuel ratio (λ), spark advance and engine speed. A discussion of the results regarding the engine performance (brake torque, brake mean effective pressure, thermal efficiency) and emissions (nitrogen oxides, CO and unburned hydrocarbons) is presented. The results reveal that λ is the most influential variable on the engine behavior due to its marked effect on the combustion temperature. As far as relatively high values of λ have to be used to prevent knock, the effect on the engine performance is negative. In contrast, the specific emissions of nitrogen oxides decrease due to a reduced formation of thermal NOx. A clear positive effect of reducing the spark advance on the specific NOx emissions has been observed as well. As concerns CO and unburned hydrocarbons (HCs), their specific emissions increase with the methane content of the fuel mixture, as expected. However, they also increase as λ increases in spite of the lower fuel concentration due to a proportionally higher reduction of the power. Finally, the effect of the increase of the engine speed is positive on the CO and HCs emissions but negative on that of NOx due to improved mixing and higher temperature associated to intensified turbulence in the cylinders.

Suggested Citation

  • Diéguez, P.M. & Urroz, J.C. & Marcelino-Sádaba, S. & Pérez-Ezcurdia, A. & Benito-Amurrio, M. & Sáinz, D. & Gandía, L.M., 2014. "Experimental study of the performance and emission characteristics of an adapted commercial four-cylinder spark ignition engine running on hydrogen–methane mixtures," Applied Energy, Elsevier, vol. 113(C), pages 1068-1076.
  • Handle: RePEc:eee:appene:v:113:y:2014:i:c:p:1068-1076
    DOI: 10.1016/j.apenergy.2013.08.063
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261913007071
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2013.08.063?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Navarro, Emilio & Leo, Teresa J. & Corral, Roberto, 2013. "CO2 emissions from a spark ignition engine operating on natural gas–hydrogen blends (HCNG)," Applied Energy, Elsevier, vol. 101(C), pages 112-120.
    2. Sen, Asok K. & Wang, Jinhua & Huang, Zuohua, 2011. "Investigating the effect of hydrogen addition on cyclic variability in a natural gas spark ignition engine: Wavelet multiresolution analysis," Applied Energy, Elsevier, vol. 88(12), pages 4860-4866.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pandey, Jayashish Kumar & Kumar, G.N., 2022. "Effect of variable compression ratio and equivalence ratio on performance, combustion and emission of hydrogen port injection SI engine," Energy, Elsevier, vol. 239(PE).
    2. Liu, Changpeng & Wang, Zhi & Song, Heping & Qi, Yunliang & Li, Yanfei & Li, Fubai & Zhang, Wang & He, Xin, 2018. "Experimental and numerical investigation on H2/CO formation and their effects on combustion characteristics in a natural gas SI engine," Energy, Elsevier, vol. 143(C), pages 597-605.
    3. Li, Xingxing & Zhu, Gangli & Qi, Suitao & Huang, Jun & Yang, Bolun, 2014. "Simultaneous production of hythane and carbon nanotubes via catalytic decomposition of methane with catalysts dispersed on porous supports," Applied Energy, Elsevier, vol. 130(C), pages 846-852.
    4. Gong, Changming & Li, Zhaohui & Li, Dong & Liu, Jiajun & Si, Xiankai & Yu, Jiawei & Huang, Wei & Liu, Fenghua & Han, Yongqiang, 2018. "Numerical investigation of hydrogen addition effects on methanol-air mixtures combustion in premixed laminar flames under lean burn conditions," Renewable Energy, Elsevier, vol. 127(C), pages 56-63.
    5. Yang, Jinxin & Ji, Changwei & Wang, Shuofeng & Wang, Du & Ma, Zedong & Zhang, Boya, 2018. "Numerical investigation on the mixture formation and combustion processes of a gasoline rotary engine with direct injected hydrogen enrichment," Applied Energy, Elsevier, vol. 224(C), pages 34-41.
    6. Iren A. Makaryan & Igor V. Sedov & Eugene A. Salgansky & Artem V. Arutyunov & Vladimir S. Arutyunov, 2022. "A Comprehensive Review on the Prospects of Using Hydrogen–Methane Blends: Challenges and Opportunities," Energies, MDPI, vol. 15(6), pages 1-27, March.
    7. Benbellil, Messaoud Abdelalli & Lounici, Mohand Said & Loubar, Khaled & Tazerout, Mohand, 2022. "Investigation of natural gas enrichment with high hydrogen participation in dual fuel diesel engine," Energy, Elsevier, vol. 243(C).
    8. Xu, Han & Weng, Chunsheng & Gao, Jian & Yao, Chunde, 2020. "The effect of energy intensification on the formation of severe knock in internal combustion engines," Applied Energy, Elsevier, vol. 266(C).
    9. Paykani, Amin & Frouzakis, Christos E. & Boulouchos, Konstantinos, 2019. "Numerical optimization of methane-based fuel blends under engine-relevant conditions using a multi-objective genetic algorithm," Applied Energy, Elsevier, vol. 242(C), pages 1712-1724.
    10. Xu, Han & Gao, Jian & Yao, Anren & Yao, Chunde, 2018. "The effect of the energy convergence and energy dissipation on the formation of severe knock," Applied Energy, Elsevier, vol. 228(C), pages 1243-1254.
    11. Ji, Changwei & Yang, Jinxin & Liu, Xiaolong & Wang, Shuofeng & Zhang, Bo & Wang, Du, 2016. "Enhancing the fuel economy and emissions performance of a gasoline engine-powered vehicle with idle elimination and hydrogen start," Applied Energy, Elsevier, vol. 182(C), pages 135-144.
    12. Kamil, Mohammed & Rahman, M.M., 2015. "Performance prediction of spark-ignition engine running on gasoline-hydrogen and methane-hydrogen blends," Applied Energy, Elsevier, vol. 158(C), pages 556-567.
    13. Wang, Shuofeng & Ji, Changwei & Zhang, Bo & Liu, Xiaolong, 2014. "Lean burn performance of a hydrogen-blended gasoline engine at the wide open throttle condition," Applied Energy, Elsevier, vol. 136(C), pages 43-50.
    14. Rafaa Saaidia & Mohamed Ali Jemni & Mohamed Salah Abid, 2017. "Simulation and Empirical Studies of the Commercial SI Engine Performance and Its Emission Levels When Running on a CNG and Hydrogen Blend," Energies, MDPI, vol. 11(1), pages 1-22, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Shuofeng & Ji, Changwei & Zhang, Bo & Liu, Xiaolong, 2014. "Lean burn performance of a hydrogen-blended gasoline engine at the wide open throttle condition," Applied Energy, Elsevier, vol. 136(C), pages 43-50.
    2. Yang, Jinxin & Ji, Changwei & Wang, Shuofeng & Wang, Du & Ma, Zedong & Zhang, Boya, 2018. "Numerical investigation on the mixture formation and combustion processes of a gasoline rotary engine with direct injected hydrogen enrichment," Applied Energy, Elsevier, vol. 224(C), pages 34-41.
    3. Su, Teng & Ji, Changwei & Wang, Shuofeng & Shi, Lei & Yang, Jinxin & Cong, Xiaoyu, 2017. "Investigation on performance of a hydrogen-gasoline rotary engine at part load and lean conditions," Applied Energy, Elsevier, vol. 205(C), pages 683-691.
    4. Woo, Seungchul & Lee, Kihyung, 2022. "Development and feasibility assessment of on-board catalytic reforming system for LPG engine to produce hydrogen in the transient state," Applied Energy, Elsevier, vol. 327(C).
    5. Ji, Changwei & Yang, Jinxin & Liu, Xiaolong & Wang, Shuofeng & Zhang, Bo & Wang, Du, 2016. "Enhancing the fuel economy and emissions performance of a gasoline engine-powered vehicle with idle elimination and hydrogen start," Applied Energy, Elsevier, vol. 182(C), pages 135-144.
    6. Yang, Li-Ping & Song, En-Zhe & Ding, Shun-Liang & Brown, Richard J. & Marwan, Norbert & Ma, Xiu-Zhen, 2016. "Analysis of the dynamic characteristics of combustion instabilities in a pre-mixed lean-burn natural gas engine," Applied Energy, Elsevier, vol. 183(C), pages 746-759.
    7. Cinti, G. & Bidini, G. & Hemmes, K., 2019. "Comparison of the solid oxide fuel cell system for micro CHP using natural gas with a system using a mixture of natural gas and hydrogen," Applied Energy, Elsevier, vol. 238(C), pages 69-77.
    8. Rudy, Wojciech & Zbikowski, Mateusz & Teodorczyk, Andrzej, 2016. "Detonations in hydrogen-methane-air mixtures in semi confined flat channels," Energy, Elsevier, vol. 116(P3), pages 1479-1483.
    9. Fanelli, Emanuele & Viggiano, Annarita & Braccio, Giacobbe & Magi, Vinicio, 2014. "On laminar flame speed correlations for H2/CO combustion in premixed spark ignition engines," Applied Energy, Elsevier, vol. 130(C), pages 166-180.
    10. Paweł Fabiś & Bartosz Flekiewicz, 2021. "Influence of LPG and DME Composition on Spark Ignition Engine Performance," Energies, MDPI, vol. 14(17), pages 1-18, September.
    11. Ji, Changwei & Wang, Shuofeng & Zhang, Bo, 2012. "Performance of a hybrid hydrogen–gasoline engine under various operating conditions," Applied Energy, Elsevier, vol. 97(C), pages 584-589.
    12. Li, Lifu & Zhang, Zhongbo, 2019. "Investigation on steam direct injection in a natural gas engine for fuel savings," Energy, Elsevier, vol. 183(C), pages 958-970.
    13. Kim, Joonsuk & Chun, Kwang Min & Song, Soonho & Baek, Hong-Kil & Lee, Seung Woo, 2018. "Hydrogen effects on the combustion stability, performance and emissions of a turbo gasoline direct injection engine in various air/fuel ratios," Applied Energy, Elsevier, vol. 228(C), pages 1353-1361.
    14. Zareei, Javad & Ghadamkheir, Kourosh & Farkhondeh, Seyed Alireza & Abed, Azher M. & Catalan Opulencia, Maria Jade & Nuñez Alvarez, José Ricardo, 2022. "Numerical investigation of hydrogen enriched natural gas effects on different characteristics of a SI engine with modified injection mechanism from port to direct injection," Energy, Elsevier, vol. 255(C).
    15. Kouchachvili, Lia & Entchev, Evgueniy, 2018. "Power to gas and H2/NG blend in SMART energy networks concept," Renewable Energy, Elsevier, vol. 125(C), pages 456-464.
    16. Darzi, Mahdi & Johnson, Derek & Ulishney, Chris & Clark, Nigel, 2018. "Low pressure direct injection strategies effect on a small SI natural gas two-stroke engine’s energy distribution and emissions," Applied Energy, Elsevier, vol. 230(C), pages 1585-1602.
    17. Lee, Chia-fon & Pang, Yuxin & Wu, Han & Nithyanandan, Karthik & Liu, Fushui, 2020. "An optical investigation of substitution rates on natural gas/diesel dual-fuel combustion in a diesel engine," Applied Energy, Elsevier, vol. 261(C).
    18. Duan, Xiongbo & Li, Yangyang & Liu, Jingping & Guo, Genmiao & Fu, Jianqin & Zhang, Quanchang & Zhang, Shiheng & Liu, Weiqiang, 2019. "Experimental study the effects of various compression ratios and spark timing on performance and emission of a lean-burn heavy-duty spark ignition engine fueled with methane gas and hydrogen blends," Energy, Elsevier, vol. 169(C), pages 558-571.
    19. Navarro, Emilio & Leo, Teresa J. & Corral, Roberto, 2013. "CO2 emissions from a spark ignition engine operating on natural gas–hydrogen blends (HCNG)," Applied Energy, Elsevier, vol. 101(C), pages 112-120.
    20. Wang, Tiantian & Liu, Xuemin & Zhang, Yang & Zhang, Hai, 2024. "Thermodynamic and emission characteristics of a hydrogen-enriched natural gas-fired boiler integrated with external flue gas recirculation and waste heat recovery," Applied Energy, Elsevier, vol. 358(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:113:y:2014:i:c:p:1068-1076. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.