IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v239y2022ipbs0360544221023100.html
   My bibliography  Save this article

Effect of EG particle size on the thermal properties of NaNO3–NaCl/EG shaped composite phase change materials

Author

Listed:
  • Li, Y.
  • Jiang, S.L.
  • Wang, C.G.
  • Zhu, Q.Z.

Abstract

The adsorption capacity of expanded graphite (EG) with three different particle sizes of 32 mesh, 50 mesh, and 80 mesh was studied by the water-soluble adsorption method. The self-made NaNO3–NaCl (95–5 wt%) was selected as the phase change heat storage material, and the three kinds of EG were used as additives. The 80 wt% NaNO3–NaCl/20 wt% EG shaped composite phase change materials (CPCM) were prepared and their properties were tested and analyzed. The research results showed that the smaller the particle size, the stronger the adsorption capacity of EG. However, the choice of EG should consider the particle size of the phase change material (PCM). The 50 mesh EG was more suitable as the adsorption carrier of NaNO3–NaCl. Compared with pure NaNO3–NaCl, NaNO3–NaCl/EG had a lower degree of supercooling, which improved the heat storage capacity of the material. As the particle size of EG decreased, the thermal conductivity increased slightly. The study analyzed the relationship between the EG adsorption capacity and its particle size, and prepared NaNO3–NaCl/EG heat storage material with high heat storage density and high thermal conductivity. It was helpful to promote the application of EG based composite heat storage materials and the development of heat storage technology.

Suggested Citation

  • Li, Y. & Jiang, S.L. & Wang, C.G. & Zhu, Q.Z., 2022. "Effect of EG particle size on the thermal properties of NaNO3–NaCl/EG shaped composite phase change materials," Energy, Elsevier, vol. 239(PB).
  • Handle: RePEc:eee:energy:v:239:y:2022:i:pb:s0360544221023100
    DOI: 10.1016/j.energy.2021.122062
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544221023100
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2021.122062?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Huang, Zhaowen & Gao, Xuenong & Xu, Tao & Fang, Yutang & Zhang, Zhengguo, 2014. "Thermal property measurement and heat storage analysis of LiNO3/KCl – expanded graphite composite phase change material," Applied Energy, Elsevier, vol. 115(C), pages 265-271.
    2. Li, Ang & Wang, Jingjing & Dong, Cheng & Dong, Wenjun & Atinafu, Dimberu G. & Chen, Xiao & Gao, Hongyi & Wang, Ge, 2018. "Core-sheath structural carbon materials for integrated enhancement of thermal conductivity and capacity," Applied Energy, Elsevier, vol. 217(C), pages 369-376.
    3. Tao, Y.B. & He, Ya-Ling, 2018. "A review of phase change material and performance enhancement method for latent heat storage system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 93(C), pages 245-259.
    4. Yuan, Mengdi & Ren, Yunxiu & Xu, Chao & Ye, Feng & Du, Xiaoze, 2019. "Characterization and stability study of a form-stable erythritol/expanded graphite composite phase change material for thermal energy storage," Renewable Energy, Elsevier, vol. 136(C), pages 211-222.
    5. Lin, Yaxue & Jia, Yuting & Alva, Guruprasad & Fang, Guiyin, 2018. "Review on thermal conductivity enhancement, thermal properties and applications of phase change materials in thermal energy storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2730-2742.
    6. Rathore, Pushpendra Kumar Singh & Shukla, Shailendra kumar, 2021. "Improvement in thermal properties of PCM/Expanded vermiculite/expanded graphite shape stabilized composite PCM for building energy applications," Renewable Energy, Elsevier, vol. 176(C), pages 295-304.
    7. Zhang, Suling & Wu, Wei & Wang, Shuangfeng, 2018. "Experimental investigations of Alum/expanded graphite composite phase change material for thermal energy storage and its compatibility with metals," Energy, Elsevier, vol. 161(C), pages 508-516.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Qianjun Mao & Xinlei Hu & Yuanyuan Zhu, 2022. "Numerical Investigation of Heat Transfer Performance and Structural Optimization of Fan-Shaped Finned Tube Heat Exchanger," Energies, MDPI, vol. 15(15), pages 1-16, August.
    2. Deng, Xunhe & Li, Cong & Sun, Xiaohan & Wang, Chengyu & Liu, Baosheng & Li, Yudong & Yang, Haiyue, 2024. "Flame-retardant wood-based composite phase change materials based on PDMS/expanded graphite coating for efficient solar-to-thermal energy storage," Applied Energy, Elsevier, vol. 368(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, Yang & Zheng, Ruowei & Li, Ji, 2022. "High latent heat phase change materials (PCMs) with low melting temperature for thermal management and storage of electronic devices and power batteries: Critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    2. Li, Zhi & Lu, Yiji & Huang, Rui & Chang, Jinwei & Yu, Xiaonan & Jiang, Ruicheng & Yu, Xiaoli & Roskilly, Anthony Paul, 2021. "Applications and technological challenges for heat recovery, storage and utilisation with latent thermal energy storage," Applied Energy, Elsevier, vol. 283(C).
    3. Du, Kun & Calautit, John & Eames, Philip & Wu, Yupeng, 2021. "A state-of-the-art review of the application of phase change materials (PCM) in Mobilized-Thermal Energy Storage (M-TES) for recovering low-temperature industrial waste heat (IWH) for distributed heat," Renewable Energy, Elsevier, vol. 168(C), pages 1040-1057.
    4. Beyne, W. & T'Jollyn, I. & Lecompte, S. & Cabeza, L.F. & De Paepe, M., 2023. "Standardised methods for the determination of key performance indicators for thermal energy storage heat exchangers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 176(C).
    5. Wu, Minqiang & Li, Tingxian & He, Qifan & Du, Ruxue & Wang, Ruzhu, 2022. "Thermally conductive and form-stable phase change composite for building thermal management," Energy, Elsevier, vol. 239(PA).
    6. Khaireldin Faraj & Mahmoud Khaled & Jalal Faraj & Farouk Hachem & Cathy Castelain, 2022. "A Summary Review on Experimental Studies for PCM Building Applications: Towards Advanced Modular Prototype," Energies, MDPI, vol. 15(4), pages 1-43, February.
    7. Wang, Miao & Li, Pan & Yu, Faquan, 2021. "Hierarchical porous carbon foam-based phase change composite with enhanced loading capacity and thermal conductivity for efficient thermal energy storage," Renewable Energy, Elsevier, vol. 172(C), pages 599-605.
    8. Chen, Xue & Li, Xiaolei & Xia, Xinlin & Sun, Chuang & Liu, Rongqiang, 2021. "Thermal storage analysis of a foam-filled PCM heat exchanger subjected to fluctuating flow conditions," Energy, Elsevier, vol. 216(C).
    9. Zou, Ting & Fu, Wanwan & Liang, Xianghui & Wang, Shuangfeng & Gao, Xuenong & Zhang, Zhengguo & Fang, Yutang, 2020. "Hydrophilic modification of expanded graphite to develop form-stable composite phase change material based on modified CaCl2·6H2O," Energy, Elsevier, vol. 190(C).
    10. Bin Huang & Lin-Li Tian & Qing-Hua Yu & Xun Liu & Zu-Guo Shen, 2021. "Numerical Analysis of Melting Process in a Rectangular Enclosure with Different Fin Locations," Energies, MDPI, vol. 14(14), pages 1-17, July.
    11. Shen, Zu-Guo & Chen, Shuai & Liu, Xun & Chen, Ben, 2021. "A review on thermal management performance enhancement of phase change materials for vehicle lithium-ion batteries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
    12. Jiang, Zhu & Palacios, Anabel & Zou, Boyang & Zhao, Yanqi & Deng, Weiyu & Zhang, Xiaosong & Ding, Yulong, 2022. "A review on the fabrication methods for structurally stabilised composite phase change materials and their impacts on the properties of materials," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    13. Huang, Kuo & Yan, Yuying & Wang, Guohua & Li, Bo, 2021. "Improving transient performance of thermoelectric generator by integrating phase change material," Energy, Elsevier, vol. 219(C).
    14. Qu, Xiaohang & Jiang, Shan & Qi, Xiaoni, 2022. "Experimental investigation on performance improvement of latent heat storage capsule by oscillating movement," Applied Energy, Elsevier, vol. 316(C).
    15. Tombrink, Jonas & Bauer, Dan, 2022. "Demand-based process steam from renewable energy: Implementation and sizing of a latent heat thermal energy storage system based on the Rotating Drum Heat Exchanger," Applied Energy, Elsevier, vol. 321(C).
    16. Jiang, Feng & Zhang, Lingling & She, Xiaohui & Li, Chuan & Cang, Daqiang & Liu, Xianglei & Xuan, Yimin & Ding, Yulong, 2020. "Skeleton materials for shape-stabilization of high temperature salts based phase change materials: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    17. Yu, Kunyang & Liu, Yushi & Yang, Yingzi, 2021. "Review on form-stable inorganic hydrated salt phase change materials: Preparation, characterization and effect on the thermophysical properties," Applied Energy, Elsevier, vol. 292(C).
    18. Tong, Xuan & Li, Nianqi & Zeng, Min & Wang, Qiuwang, 2019. "Organic phase change materials confined in carbon-based materials for thermal properties enhancement: Recent advancement and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 108(C), pages 398-422.
    19. Hamidi, E. & Ganesan, P.B. & Sharma, R.K. & Yong, K.W., 2023. "Computational study of heat transfer enhancement using porous foams with phase change materials: A comparative review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 176(C).
    20. Stengler, Jana & Linder, Marc, 2020. "Thermal energy storage combined with a temperature boost: An underestimated feature of thermochemical systems," Applied Energy, Elsevier, vol. 262(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:239:y:2022:i:pb:s0360544221023100. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.