Hierarchical porous carbon foam-based phase change composite with enhanced loading capacity and thermal conductivity for efficient thermal energy storage
Author
Abstract
Suggested Citation
DOI: 10.1016/j.renene.2021.03.071
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Li, Bingmeng & Shu, Dan & Wang, Ruifang & Zhai, Lanlan & Chai, Yuye & Lan, Yunjun & Cao, Hongwei & Zou, Chao, 2020. "Polyethylene glycol/silica (PEG@SiO2) composite inspired by the synthesis of mesoporous materials as shape-stabilized phase change material for energy storage," Renewable Energy, Elsevier, vol. 145(C), pages 84-92.
- Li, Ang & Wang, Jingjing & Dong, Cheng & Dong, Wenjun & Atinafu, Dimberu G. & Chen, Xiao & Gao, Hongyi & Wang, Ge, 2018. "Core-sheath structural carbon materials for integrated enhancement of thermal conductivity and capacity," Applied Energy, Elsevier, vol. 217(C), pages 369-376.
- Moreno, Pere & Solé, Cristian & Castell, Albert & Cabeza, Luisa F., 2014. "The use of phase change materials in domestic heat pump and air-conditioning systems for short term storage: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 1-13.
- Sun, Qinrong & Zhang, Nan & Zhang, Haiquan & Yu, Xiaoping & Ding, Yulong & Yuan, Yanping, 2020. "Functional phase change composites with highly efficient electrical to thermal energy conversion," Renewable Energy, Elsevier, vol. 145(C), pages 2629-2636.
- Sardari, Pouyan Talebizadeh & Giddings, Donald & Grant, David & Gillott, Mark & Walker, Gavin S., 2020. "Discharge of a composite metal foam/phase change material to air heat exchanger for a domestic thermal storage unit," Renewable Energy, Elsevier, vol. 148(C), pages 987-1001.
- Fang, Guiyin & Li, Hui & Chen, Zhi & Liu, Xu, 2010. "Preparation and characterization of stearic acid/expanded graphite composites as thermal energy storage materials," Energy, Elsevier, vol. 35(12), pages 4622-4626.
- Lin, Yaxue & Jia, Yuting & Alva, Guruprasad & Fang, Guiyin, 2018. "Review on thermal conductivity enhancement, thermal properties and applications of phase change materials in thermal energy storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2730-2742.
- Li, Min & Wang, Chengcheng, 2019. "Preparation and characterization of GO/PEG photo-thermal conversion form-stable composite phase change materials," Renewable Energy, Elsevier, vol. 141(C), pages 1005-1012.
- Wang, Yi & Xia, Tian Dong & Feng, Hui Xia & Zhang, Han, 2011. "Stearic acid/polymethylmethacrylate composite as form-stable phase change materials for latent heat thermal energy storage," Renewable Energy, Elsevier, vol. 36(6), pages 1814-1820.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Ma, Ying & Wei, Rongrong & Zuo, Hongyan & Zuo, Qingsong & Chen, Ying & Wu, Shuying & Yang, Heng, 2023. "Development of hierarchical MOF-based composite phase change materials with enhanced latent heat storage for low-temperature battery thermal optimization," Energy, Elsevier, vol. 283(C).
- Wu, Taofen & Wu, Dan & Deng, Yong & Luo, Dajun & Wu, Fuzhong & Dai, Xinyi & Lu, Jia & Sun, Shuya, 2024. "Three-dimensional network-based composite phase change materials: Construction, structure, performance and applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 199(C).
- Ma, Ying & Wei, Rongrong & Zuo, Hongyan & Zuo, Qingsong & Luo, Xiaoyu & Chen, Ying & Wu, Shuying & Chen, Wei, 2024. "N-doped EG@MOFs derived porous carbon composite phase change materials for thermal optimization of Li-ion batteries at low temperature," Energy, Elsevier, vol. 286(C).
- Wang, Liangcai & Xie, Linen & Wu, Jielong & Li, Xiang & Ma, Huanhuan & Zhou, Jianbin, 2022. "Sequential H3PO4–CO2 assisted synthesis of lignin-derived porous carbon: CO2 activation kinetics investigation and textural properties regulation," Renewable Energy, Elsevier, vol. 191(C), pages 639-648.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Costa, Sol Carolina & Kenisarin, Murat, 2022. "A review of metallic materials for latent heat thermal energy storage: Thermophysical properties, applications, and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
- Zhang, P. & Xiao, X. & Ma, Z.W., 2016. "A review of the composite phase change materials: Fabrication, characterization, mathematical modeling and application to performance enhancement," Applied Energy, Elsevier, vol. 165(C), pages 472-510.
- Li, Minqi & Lin, Zhongqi & Sun, Yongjun & Wu, Fengping & Xu, Tao & Wu, Huijun & Zhou, Xiaoqing & Wang, Dengjia & Liu, Yanfeng, 2020. "Preparation and characterizations of a novel temperature-tuned phase change material based on sodium acetate trihydrate for improved performance of heat pump systems," Renewable Energy, Elsevier, vol. 157(C), pages 670-677.
- Liu, Huan & Tian, Xinxin & Ouyang, Mize & Wang, Xiang & Wu, Dezhen & Wang, Xiaodong, 2021. "Microencapsulating n-docosane phase change material into CaCO3/Fe3O4 composites for high-efficient utilization of solar photothermal energy," Renewable Energy, Elsevier, vol. 179(C), pages 47-64.
- Yu, Kunyang & Liu, Yushi & Yang, Yingzi, 2021. "Review on form-stable inorganic hydrated salt phase change materials: Preparation, characterization and effect on the thermophysical properties," Applied Energy, Elsevier, vol. 292(C).
- Hamidi, E. & Ganesan, P.B. & Sharma, R.K. & Yong, K.W., 2023. "Computational study of heat transfer enhancement using porous foams with phase change materials: A comparative review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 176(C).
- Nie, Binjian & Palacios, Anabel & Zou, Boyang & Liu, Jiaxu & Zhang, Tongtong & Li, Yunren, 2020. "Review on phase change materials for cold thermal energy storage applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
- Li, Y. & Jiang, S.L. & Wang, C.G. & Zhu, Q.Z., 2022. "Effect of EG particle size on the thermal properties of NaNO3–NaCl/EG shaped composite phase change materials," Energy, Elsevier, vol. 239(PB).
- Yuan, Yanping & Zhang, Nan & Tao, Wenquan & Cao, Xiaoling & He, Yaling, 2014. "Fatty acids as phase change materials: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 482-498.
- Cui, Wei & Si, Tianyu & Li, Xiangxuan & Li, Xinyi & Lu, Lin & Ma, Ting & Wang, Qiuwang, 2022. "Heat transfer enhancement of phase change materials embedded with metal foam for thermal energy storage: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 169(C).
- Ma, Ying & Wei, Rongrong & Zuo, Hongyan & Zuo, Qingsong & Chen, Ying & Wu, Shuying & Yang, Heng, 2023. "Development of hierarchical MOF-based composite phase change materials with enhanced latent heat storage for low-temperature battery thermal optimization," Energy, Elsevier, vol. 283(C).
- Zhang, Xialan & Lin, Qilang & Luo, Huijun & Luo, Shiyuan, 2020. "Three-dimensional graphitic hierarchical porous carbon/stearic acid composite as shape-stabilized phase change material for thermal energy storage," Applied Energy, Elsevier, vol. 260(C).
- Fei, Wenbin & Bandeira Neto, Luis A. & Dai, Sheng & Cortes, Douglas D. & Narsilio, Guillermo A., 2023. "Numerical analyses of energy screw pile filled with phase change materials," Renewable Energy, Elsevier, vol. 202(C), pages 865-879.
- Nie, Binjian & She, Xiaohui & Du, Zheng & Xie, Chunping & Li, Yongliang & He, Zhubing & Ding, Yulong, 2019. "System performance and economic assessment of a thermal energy storage based air-conditioning unit for transport applications," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
- Umair, Malik Muhammad & Zhang, Yuang & Iqbal, Kashif & Zhang, Shufen & Tang, Bingtao, 2019. "Novel strategies and supporting materials applied to shape-stabilize organic phase change materials for thermal energy storage–A review," Applied Energy, Elsevier, vol. 235(C), pages 846-873.
- Wang, Yunming & Tang, Bingtao & Zhang, Shufen, 2014. "Organic, cross-linking, and shape-stabilized solar thermal energy storage materials: A reversible phase transition driven by broadband visible light," Applied Energy, Elsevier, vol. 113(C), pages 59-66.
- Wang, Hanxi & Xu, Jianling & Sheng, Lianxi, 2019. "Study on the comprehensive utilization of city kitchen waste as a resource in China," Energy, Elsevier, vol. 173(C), pages 263-277.
- Bing, Naici & Yang, Jie & Gao, Huan & Xie, Huaqing & Yu, Wei, 2021. "Unsaturated polyester resin supported form-stable phase change materials with enhanced thermal conductivity for solar energy storage and conversion," Renewable Energy, Elsevier, vol. 173(C), pages 926-933.
- Giovanni Salvatore Sau & Valerio Tripi & Anna Chiara Tizzoni & Raffaele Liberatore & Emiliana Mansi & Annarita Spadoni & Natale Corsaro & Mauro Capocelli & Tiziano Delise & Anna Della Libera, 2021. "High-Temperature Chloride-Carbonate Phase Change Material: Thermal Performances and Modelling of a Packed Bed Storage System for Concentrating Solar Power Plants," Energies, MDPI, vol. 14(17), pages 1-17, August.
- Li, Han & Li, Jinchao & Kong, Xiangfei & Long, Hao & Yang, Hua & Yao, Chengqiang, 2020. "A novel solar thermal system combining with active phase-change material heat storage wall (STS-APHSW): Dynamic model, validation and thermal performance," Energy, Elsevier, vol. 201(C).
More about this item
Keywords
MOF derived Porous carbon; Hierarchical porous carbon foam; Shape-stable phase change material; Enhanced loading capacity; Improved thermal conductivity;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:172:y:2021:i:c:p:599-605. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.