IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v238y2022ipcs0360544221020776.html
   My bibliography  Save this article

A parallel meta-heuristic method for solving large scale unit commitment considering the integration of new energy sectors

Author

Listed:
  • Zhu, Xiaodong
  • Zhao, Shihao
  • Yang, Zhile
  • Zhang, Ning
  • Xu, Xinzhi

Abstract

In recent years, global warming impact are becoming increasingly severe due to the dramatic green house emission and severe environmental problem. The large integration of PEV and RGs directly affect the supply and demand balance of power grid, which bring challenges to the secure and economic operation of power system. This study proposes a novel parallel social learning particle swarm optimization method for solving the large scale power system scheduling problem with significant integration of RGs and PEVs. The novel algorithm combines the real value and binary decision variables obtained by social learning particle swarm optimization algorithm, aiming to solve large scale mixed integer unit commitment problem considering charging and discharging management of PEV with large RGs integration. To verify the effectiveness of the proposed algorithm, numerical examples are analyzed for multi scale unit numbers and various cases of RGs and PEVs. The results show that the proposed parallel social learning particle swarm optimization method has superior performance in solving UC problems considering new energy sectors. In addition, the case studies shows that the integration of new energy sources and flexible demand side management of plug-in electric vehicles have great potentials to alleviate power grid load and bring considerable economic benefits.

Suggested Citation

  • Zhu, Xiaodong & Zhao, Shihao & Yang, Zhile & Zhang, Ning & Xu, Xinzhi, 2022. "A parallel meta-heuristic method for solving large scale unit commitment considering the integration of new energy sectors," Energy, Elsevier, vol. 238(PC).
  • Handle: RePEc:eee:energy:v:238:y:2022:i:pc:s0360544221020776
    DOI: 10.1016/j.energy.2021.121829
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544221020776
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2021.121829?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wu, Jing & Botterud, Audun & Mills, Andrew & Zhou, Zhi & Hodge, Bri-Mathias & Heaney, Mike, 2015. "Integrating solar PV (photovoltaics) in utility system operations: Analytical framework and Arizona case study," Energy, Elsevier, vol. 85(C), pages 1-9.
    2. Wang, Bo & Wang, Shuming & Zhou, Xianzhong & Watada, Junzo, 2016. "Multi-objective unit commitment with wind penetration and emission concerns under stochastic and fuzzy uncertainties," Energy, Elsevier, vol. 111(C), pages 18-31.
    3. Yang, Zhile & Li, Kang & Guo, Yuanjun & Feng, Shengzhong & Niu, Qun & Xue, Yusheng & Foley, Aoife, 2019. "A binary symmetric based hybrid meta-heuristic method for solving mixed integer unit commitment problem integrating with significant plug-in electric vehicles," Energy, Elsevier, vol. 170(C), pages 889-905.
    4. Shahbazitabar, Maryam & Abdi, Hamdi, 2018. "A novel priority-based stochastic unit commitment considering renewable energy sources and parking lot cooperation," Energy, Elsevier, vol. 161(C), pages 308-324.
    5. Pan, Jeng-Shyang & Hu, Pei & Chu, Shu-Chuan, 2021. "Binary fish migration optimization for solving unit commitment," Energy, Elsevier, vol. 226(C).
    6. Zhou, Bowen & Yao, Feng & Littler, Tim & Zhang, Huaguang, 2016. "An electric vehicle dispatch module for demand-side energy participation," Applied Energy, Elsevier, vol. 177(C), pages 464-474.
    7. Anand, Himanshu & Narang, Nitin & Dhillon, J.S., 2019. "Multi-objective combined heat and power unit commitment using particle swarm optimization," Energy, Elsevier, vol. 172(C), pages 794-807.
    8. Zhang, Jingrui & Tang, Qinghui & Chen, Yalin & Lin, Shuang, 2016. "A hybrid particle swarm optimization with small population size to solve the optimal short-term hydro-thermal unit commitment problem," Energy, Elsevier, vol. 109(C), pages 765-780.
    9. Vatanpour, Mohsen & Sadeghi Yazdankhah, Ahmad, 2018. "The impact of energy storage modeling in coordination with wind farm and thermal units on security and reliability in a stochastic unit commitment," Energy, Elsevier, vol. 162(C), pages 476-490.
    10. Anand, Himanshu & Narang, Nitin & Dhillon, J.S., 2018. "Profit based unit commitment using hybrid optimization technique," Energy, Elsevier, vol. 148(C), pages 701-715.
    11. Christiana Figueres & Corinne Le Quéré & Anand Mahindra & Oliver Bäte & Gail Whiteman & Glen Peters & Dabo Guan, 2018. "Emissions are still rising: ramp up the cuts," Nature, Nature, vol. 564(7734), pages 27-30, December.
    12. Quan, Hao & Srinivasan, Dipti & Khambadkone, Ashwin M. & Khosravi, Abbas, 2015. "A computational framework for uncertainty integration in stochastic unit commitment with intermittent renewable energy sources," Applied Energy, Elsevier, vol. 152(C), pages 71-82.
    13. Li, Chaoshun & Wang, Wenxiao & Wang, Jinwen & Chen, Deshu, 2019. "Network-constrained unit commitment with RE uncertainty and PHES by using a binary artificial sheep algorithm," Energy, Elsevier, vol. 189(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhao, Shihao & Li, Kang & Yin, Mingjia & Yu, James & Yang, Zhile & Li, Yihuan, 2024. "Transportable energy storage assisted post-disaster restoration of distribution networks with renewable generations," Energy, Elsevier, vol. 295(C).
    2. Akhlaghi, M. & Moravej, Z. & Bagheri, A., 2022. "Maximizing wind energy utilization in smart power systems using a flexible network-constrained unit commitment through dynamic lines and transformers rating," Energy, Elsevier, vol. 261(PA).
    3. Zhang, Lidong & Li, Jiao & Xu, Xiandong & Liu, Fengrui & Guo, Yuanjun & Yang, Zhile & Hu, Tianyu, 2023. "High spatial granularity residential heating load forecast based on Dendrite net model," Energy, Elsevier, vol. 269(C).
    4. Haiyan Zheng & Liying Huang & Ran Quan, 2023. "Mixed-Integer Conic Formulation of Unit Commitment with Stochastic Wind Power," Mathematics, MDPI, vol. 11(2), pages 1-16, January.
    5. Layon Mescolin de Oliveira & Ivo Chaves da Silva Junior & Ramon Abritta, 2022. "Search Space Reduction for the Thermal Unit Commitment Problem through a Relevance Matrix," Energies, MDPI, vol. 15(19), pages 1-16, September.
    6. Layon Mescolin de Oliveira & Ivo Chaves da Silva Junior & Ramon Abritta, 2023. "A Space Reduction Heuristic for Thermal Unit Commitment Considering Ramp Constraints and Large-Scale Generation Systems," Energies, MDPI, vol. 16(14), pages 1-15, July.
    7. Yang, Wenqiang & Zhu, Xinxin & Xiao, Qinge & Yang, Zhile, 2023. "Enhanced multi-objective marine predator algorithm for dynamic economic-grid fluctuation dispatch with plug-in electric vehicles," Energy, Elsevier, vol. 282(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dong, Jizhe & Han, Shunjie & Shao, Xiangxin & Tang, Like & Chen, Renhui & Wu, Longfei & Zheng, Cunlong & Li, Zonghao & Li, Haolin, 2021. "Day-ahead wind-thermal unit commitment considering historical virtual wind power data," Energy, Elsevier, vol. 235(C).
    2. Pan, Jeng-Shyang & Hu, Pei & Chu, Shu-Chuan, 2021. "Binary fish migration optimization for solving unit commitment," Energy, Elsevier, vol. 226(C).
    3. Zhao, Shihao & Li, Kang & Yang, Zhile & Xu, Xinzhi & Zhang, Ning, 2022. "A new power system active rescheduling method considering the dispatchable plug-in electric vehicles and intermittent renewable energies," Applied Energy, Elsevier, vol. 314(C).
    4. Wang, Hong-Jiang & Pan, Jeng-Shyang & Nguyen, Trong-The & Weng, Shaowei, 2022. "Distribution network reconfiguration with distributed generation based on parallel slime mould algorithm," Energy, Elsevier, vol. 244(PB).
    5. Dong, Jizhe & Li, Yuanhan & Zuo, Shi & Wu, Xiaomei & Zhang, Zuyao & Du, Jiang, 2023. "An intraperiod arbitrary ramping-rate changing model in unit commitment," Energy, Elsevier, vol. 284(C).
    6. Harun Or Rashid Howlader & Oludamilare Bode Adewuyi & Ying-Yi Hong & Paras Mandal & Ashraf Mohamed Hemeida & Tomonobu Senjyu, 2019. "Energy Storage System Analysis Review for Optimal Unit Commitment," Energies, MDPI, vol. 13(1), pages 1-21, December.
    7. Basu, Mousumi, 2023. "Fuel constrained commitment scheduling for combined heat and power dispatch incorporating electric vehicle parking lot," Energy, Elsevier, vol. 276(C).
    8. Marcelo Becerra-Rozas & José Lemus-Romani & Felipe Cisternas-Caneo & Broderick Crawford & Ricardo Soto & Gino Astorga & Carlos Castro & José García, 2022. "Continuous Metaheuristics for Binary Optimization Problems: An Updated Systematic Literature Review," Mathematics, MDPI, vol. 11(1), pages 1-32, December.
    9. Georgios Semertzidis & Dimitrios Stamatakis & Vasilios Tsalavoutis & Athanasios I. Tolis, 2022. "Optimized electric vehicle charging integrated in the unit commitment problem," Operational Research, Springer, vol. 22(5), pages 5137-5204, November.
    10. Aml Sayed & Mohamed Ebeed & Ziad M. Ali & Adel Bedair Abdel-Rahman & Mahrous Ahmed & Shady H. E. Abdel Aleem & Adel El-Shahat & Mahmoud Rihan, 2021. "A Hybrid Optimization Algorithm for Solving of the Unit Commitment Problem Considering Uncertainty of the Load Demand," Energies, MDPI, vol. 14(23), pages 1-21, November.
    11. Pavlos Nikolaidis & Harris Partaourides, 2021. "A Model Predictive Control for the Dynamical Forecast of Operating Reserves in Frequency Regulation Services," Forecasting, MDPI, vol. 3(1), pages 1-14, March.
    12. Abdi, Hamdi, 2021. "Profit-based unit commitment problem: A review of models, methods, challenges, and future directions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    13. Zepter, Jan Martin & Weibezahn, Jens, 2019. "Unit commitment under imperfect foresight – The impact of stochastic photovoltaic generation," Applied Energy, Elsevier, vol. 243(C), pages 336-349.
    14. Haiyan Zheng & Liying Huang & Ran Quan, 2023. "Mixed-Integer Conic Formulation of Unit Commitment with Stochastic Wind Power," Mathematics, MDPI, vol. 11(2), pages 1-16, January.
    15. M. A. El-Shorbagy & A. A. Mousa & M. A. Farag, 2019. "An intelligent computing technique based on a dynamic-size subpopulations for unit commitment problem," OPSEARCH, Springer;Operational Research Society of India, vol. 56(3), pages 911-944, September.
    16. Nikolaidis, Pavlos & Poullikkas, Andreas, 2021. "A novel cluster-based spinning reserve dynamic model for wind and PV power reinforcement," Energy, Elsevier, vol. 234(C).
    17. Luis Montero & Antonio Bello & Javier Reneses, 2022. "A Review on the Unit Commitment Problem: Approaches, Techniques, and Resolution Methods," Energies, MDPI, vol. 15(4), pages 1-40, February.
    18. Papadimitrakis, M. & Giamarelos, N. & Stogiannos, M. & Zois, E.N. & Livanos, N.A.-I. & Alexandridis, A., 2021. "Metaheuristic search in smart grid: A review with emphasis on planning, scheduling and power flow optimization applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    19. Zhang, Heng & Hu, Xiao & Cheng, Haozhong & Zhang, Shenxi & Hong, Shaoyun & Gu, Qingfa, 2021. "Coordinated scheduling of generators and tie lines in multi-area power systems under wind energy uncertainty," Energy, Elsevier, vol. 222(C).
    20. Doubleday, Kate & Lara, José Daniel & Hodge, Bri-Mathias, 2022. "Investigation of stochastic unit commitment to enable advanced flexibility measures for high shares of solar PV," Applied Energy, Elsevier, vol. 321(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:238:y:2022:i:pc:s0360544221020776. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.