IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v314y2022ics030626192200174x.html
   My bibliography  Save this article

A new power system active rescheduling method considering the dispatchable plug-in electric vehicles and intermittent renewable energies

Author

Listed:
  • Zhao, Shihao
  • Li, Kang
  • Yang, Zhile
  • Xu, Xinzhi
  • Zhang, Ning

Abstract

The significant penetration of renewable power generations (RGs) and the large-scale use of plug-in electric vehicles (PEVs) have brought tangible impacts in tackling the climate change challenge the mankind has been facing due to substantive green-house gas and pollutant emissions from fossil-fuel based thermal power generation plants. However, the uncertainty of RGs has also exerted significant challenges to the grid operation and control. Therefore, dynamic power system scheduling to accommodate the intermittent RGs and mass roll-out of PEVs has become extremely important. In this paper, a novel power system rescheduling strategy is proposed to tackle this problem. Considering the uncertainty of the wind energy, a set of indices according to different wind power application scenarios is proposed to initiate a rescheduling scheme for power generations. In addition, a social learning particle swarm optimization algorithm based on real-value and binary parallel is proposed to schedule the output of generator units and the charging and discharging of the PEV. The effectiveness of the proposed active rescheduling framework and solving algorithm has been verified by extensive experiments considering different number of generating units and scenarios, achieving up to over 5.3% cost reduction. The experimental results have also shown that through expropriate management of the charging and discharging of PEVs would be significantly alleviate the negative impact on the grid stability caused by the intermittent wind power generations.

Suggested Citation

  • Zhao, Shihao & Li, Kang & Yang, Zhile & Xu, Xinzhi & Zhang, Ning, 2022. "A new power system active rescheduling method considering the dispatchable plug-in electric vehicles and intermittent renewable energies," Applied Energy, Elsevier, vol. 314(C).
  • Handle: RePEc:eee:appene:v:314:y:2022:i:c:s030626192200174x
    DOI: 10.1016/j.apenergy.2022.118715
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S030626192200174X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2022.118715?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Diuana, Fabio A. & Viviescas, Cindy & Schaeffer, Roberto, 2019. "An analysis of the impacts of wind power penetration in the power system of southern Brazil," Energy, Elsevier, vol. 186(C).
    2. Bi, Huibo & Shang, Wen-Long & Chen, Yanyan & Wang, Kezhi & Yu, Qing & Sui, Yi, 2021. "GIS aided sustainable urban road management with a unifying queueing and neural network model," Applied Energy, Elsevier, vol. 291(C).
    3. Yang, Zhile & Li, Kang & Guo, Yuanjun & Feng, Shengzhong & Niu, Qun & Xue, Yusheng & Foley, Aoife, 2019. "A binary symmetric based hybrid meta-heuristic method for solving mixed integer unit commitment problem integrating with significant plug-in electric vehicles," Energy, Elsevier, vol. 170(C), pages 889-905.
    4. G. Cobos, Noemi & Arroyo, José M. & Alguacil, Natalia & Street, Alexandre, 2018. "Network-constrained unit commitment under significant wind penetration: A multistage robust approach with non-fixed recourse," Applied Energy, Elsevier, vol. 232(C), pages 489-503.
    5. de Mars, Patrick & O’Sullivan, Aidan, 2021. "Applying reinforcement learning and tree search to the unit commitment problem," Applied Energy, Elsevier, vol. 302(C).
    6. Zhou, Yuzhou & Zhai, Qiaozhu & Yuan, Wei & Wu, Jiang, 2021. "Capacity expansion planning for wind power and energy storage considering hourly robust transmission constrained unit commitment," Applied Energy, Elsevier, vol. 302(C).
    7. Lund, Henrik & Kempton, Willett, 2008. "Integration of renewable energy into the transport and electricity sectors through V2G," Energy Policy, Elsevier, vol. 36(9), pages 3578-3587, September.
    8. Wang, Tianjing & Tang, Yong, 2022. "Transfer-Reinforcement-Learning-Based rescheduling of differential power grids considering security constraints," Applied Energy, Elsevier, vol. 306(PB).
    9. Zhan, Shuguang & Wang, Pengling & Wong, S.C. & Lo, S.M., 2022. "Energy-efficient high-speed train rescheduling during a major disruption," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 157(C).
    10. Nemati, Mohsen & Braun, Martin & Tenbohlen, Stefan, 2018. "Optimization of unit commitment and economic dispatch in microgrids based on genetic algorithm and mixed integer linear programming," Applied Energy, Elsevier, vol. 210(C), pages 944-963.
    11. Hirth, Lion & Ziegenhagen, Inka, 2015. "Balancing power and variable renewables: Three links," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 1035-1051.
    12. Christiana Figueres & Corinne Le Quéré & Anand Mahindra & Oliver Bäte & Gail Whiteman & Glen Peters & Dabo Guan, 2018. "Emissions are still rising: ramp up the cuts," Nature, Nature, vol. 564(7734), pages 27-30, December.
    13. Li, Chung-Lun & Li, Feng, 2020. "Rescheduling production and outbound deliveries when transportation service is disrupted," European Journal of Operational Research, Elsevier, vol. 286(1), pages 138-148.
    14. Zepter, Jan Martin & Weibezahn, Jens, 2019. "Unit commitment under imperfect foresight – The impact of stochastic photovoltaic generation," Applied Energy, Elsevier, vol. 243(C), pages 336-349.
    15. Altazin, Estelle & Dauzère-Pérès, Stéphane & Ramond, François & Tréfond, Sabine, 2020. "A multi-objective optimization-simulation approach for real time rescheduling in dense railway systems," European Journal of Operational Research, Elsevier, vol. 286(2), pages 662-672.
    16. Jin, Jingliang & Zhou, Peng & Zhang, Mingming & Yu, Xianyu & Din, Hao, 2018. "Balancing low-carbon power dispatching strategy for wind power integrated system," Energy, Elsevier, vol. 149(C), pages 914-924.
    17. Quan, Hao & Srinivasan, Dipti & Khambadkone, Ashwin M. & Khosravi, Abbas, 2015. "A computational framework for uncertainty integration in stochastic unit commitment with intermittent renewable energy sources," Applied Energy, Elsevier, vol. 152(C), pages 71-82.
    18. Shang, Wen-Long & Chen, Jinyu & Bi, Huibo & Sui, Yi & Chen, Yanyan & Yu, Haitao, 2021. "Impacts of COVID-19 pandemic on user behaviors and environmental benefits of bike sharing: A big-data analysis," Applied Energy, Elsevier, vol. 285(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chen, Yuanyi & Hu, Simon & Zheng, Yanchong & Xie, Shiwei & Yang, Qiang & Wang, Yubin & Hu, Qinru, 2024. "Coordinated optimization of logistics scheduling and electricity dispatch for electric logistics vehicles considering uncertain electricity prices and renewable generation," Applied Energy, Elsevier, vol. 364(C).
    2. Zhao, Shihao & Li, Kang & Yin, Mingjia & Yu, James & Yang, Zhile & Li, Yihuan, 2024. "Transportable energy storage assisted post-disaster restoration of distribution networks with renewable generations," Energy, Elsevier, vol. 295(C).
    3. Zhang, Shulei & Jia, Runda & Pan, Hengxin & Cao, Yankai, 2023. "A safe reinforcement learning-based charging strategy for electric vehicles in residential microgrid," Applied Energy, Elsevier, vol. 348(C).
    4. Jin, Jingliang & Wen, Qinglan & Zhao, Liya & Zhou, Chaoyang & Guo, Xiaojun, 2023. "Measuring environmental performance of power dispatch influenced by low-carbon approaches," Renewable Energy, Elsevier, vol. 209(C), pages 325-339.
    5. Alya AlHammadi & Nasser Al-Saif & Ameena Saad Al-Sumaiti & Mousa Marzband & Tareefa Alsumaiti & Ehsan Heydarian-Forushani, 2022. "Techno-Economic Analysis of Hybrid Renewable Energy Systems Designed for Electric Vehicle Charging: A Case Study from the United Arab Emirates," Energies, MDPI, vol. 15(18), pages 1-20, September.
    6. Ibrahim Alsaidan & Mohd Bilal & Muhannad Alaraj & Mohammad Rizwan & Fahad M. Almasoudi, 2023. "A Novel EA-Based Techno–Economic Analysis of Charging System for Electric Vehicles: A Case Study of Qassim Region, Saudi Arabia," Mathematics, MDPI, vol. 11(9), pages 1-31, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jiang, Sufan & Gao, Shan & Pan, Guangsheng & Zhao, Xin & Liu, Yu & Guo, Yasen & Wang, Sicheng, 2020. "A novel robust security constrained unit commitment model considering HVDC regulation," Applied Energy, Elsevier, vol. 278(C).
    2. Zhu, Xiaodong & Zhao, Shihao & Yang, Zhile & Zhang, Ning & Xu, Xinzhi, 2022. "A parallel meta-heuristic method for solving large scale unit commitment considering the integration of new energy sectors," Energy, Elsevier, vol. 238(PC).
    3. Yu, Qing & Li, Weifeng & Zhang, Haoran & Chen, Jinyu, 2022. "GPS data in taxi-sharing system: Analysis of potential demand and assessment of fuel consumption based on routing probability model," Applied Energy, Elsevier, vol. 314(C).
    4. Qiao, Dongdong & Wei, Xuezhe & Fan, Wenjun & Jiang, Bo & Lai, Xin & Zheng, Yuejiu & Tang, Xiaolin & Dai, Haifeng, 2022. "Toward safe carbon–neutral transportation: Battery internal short circuit diagnosis based on cloud data for electric vehicles," Applied Energy, Elsevier, vol. 317(C).
    5. Zhou, Junfeng & Zhang, Yanhui & Zhang, Yubo & Shang, Wen-Long & Yang, Zhile & Feng, Wei, 2022. "Parameters identification of photovoltaic models using a differential evolution algorithm based on elite and obsolete dynamic learning," Applied Energy, Elsevier, vol. 314(C).
    6. Hongxin Yu & Yaohui Jiang & Zhaowen Zhang & Wen-Long Shang & Chunjia Han & Yuanjun Zhao, 2022. "The impact of carbon emission trading policy on firms’ green innovation in China," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 8(1), pages 1-24, December.
    7. Zhengwen Liao, 2023. "Rescheduling Out-of-Gauge Trains with Speed Restrictions and Temporal Blockades on the Opposite-Direction Track," Mathematics, MDPI, vol. 11(12), pages 1-26, June.
    8. Dai, Rongjian & Ding, Chuan & Gao, Jian & Wu, Xinkai & Yu, Bin, 2022. "Optimization and evaluation for autonomous taxi ride-sharing schedule and depot location from the perspective of energy consumption," Applied Energy, Elsevier, vol. 308(C).
    9. Yang, Zaoli & Li, Qin & Yan, Yamin & Shang, Wen-Long & Ochieng, Washington, 2022. "Examining influence factors of Chinese electric vehicle market demand based on online reviews under moderating effect of subsidy policy," Applied Energy, Elsevier, vol. 326(C).
    10. Nie, Qingyun & Zhang, Lihui & Tong, Zihao & Dai, Guyu & Chai, Jianxue, 2022. "Cost compensation method for PEVs participating in dynamic economic dispatch based on carbon trading mechanism," Energy, Elsevier, vol. 239(PA).
    11. Awol Seid Ebrie & Chunhyun Paik & Yongjoo Chung & Young Jin Kim, 2023. "Environment-Friendly Power Scheduling Based on Deep Contextual Reinforcement Learning," Energies, MDPI, vol. 16(16), pages 1-12, August.
    12. Wang, Wei & Feng, Bin & Huang, Gang & Guo, Chuangxin & Liao, Wenlong & Chen, Zhe, 2023. "Conformal asymmetric multi-quantile generative transformer for day-ahead wind power interval prediction," Applied Energy, Elsevier, vol. 333(C).
    13. Li, Feng & Li, Yanjie & Zhou, Siqi & Chen, Yifang & Sun, Xuan & Deng, Yutong, 2022. "Wireless power transfer tuning model of electric vehicles with pavement materials as transmission media for energy conservation," Applied Energy, Elsevier, vol. 323(C).
    14. Qiu, Haifeng & Sun, Qirun & Lu, Xi & Beng Gooi, Hoay & Zhang, Suhan, 2022. "Optimality-feasibility-aware multistage unit commitment considering nonanticipative realization of uncertainty," Applied Energy, Elsevier, vol. 327(C).
    15. Jiang, Sufan & Gao, Shan & Pan, Guangsheng & Liu, Yu & Wu, Chuanshen & Wang, Sicheng, 2021. "Congestion-aware robust security constrained unit commitment model for AC-DC grids," Applied Energy, Elsevier, vol. 304(C).
    16. Isuru, Mohasha & Hotz, Matthias & Gooi, H.B. & Utschick, Wolfgang, 2020. "Network-constrained thermal unit commitment fortexhybrid AC/DC transmission grids under wind power uncertainty," Applied Energy, Elsevier, vol. 258(C).
    17. Qiu, Dawei & Wang, Yi & Sun, Mingyang & Strbac, Goran, 2022. "Multi-service provision for electric vehicles in power-transportation networks towards a low-carbon transition: A hierarchical and hybrid multi-agent reinforcement learning approach," Applied Energy, Elsevier, vol. 313(C).
    18. Wenjing Wang & Yanyan Chen & Haodong Sun & Yusen Chen, 2021. "Multiple Binary Classification Model of Trip Chain Based on the Fusion of Internet Location Data and Transport Data," Sustainability, MDPI, vol. 13(21), pages 1-15, November.
    19. Mubbashir Ali & Jussi Ekström & Matti Lehtonen, 2018. "Sizing Hydrogen Energy Storage in Consideration of Demand Response in Highly Renewable Generation Power Systems," Energies, MDPI, vol. 11(5), pages 1-11, May.
    20. Maria Taljegard & Lisa Göransson & Mikael Odenberger & Filip Johnsson, 2021. "To Represent Electric Vehicles in Electricity Systems Modelling—Aggregated Vehicle Representation vs. Individual Driving Profiles," Energies, MDPI, vol. 14(3), pages 1-25, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:314:y:2022:i:c:s030626192200174x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.