IDEAS home Printed from https://ideas.repec.org/a/spr/opsear/v56y2019i3d10.1007_s12597-019-00388-x.html
   My bibliography  Save this article

An intelligent computing technique based on a dynamic-size subpopulations for unit commitment problem

Author

Listed:
  • M. A. El-Shorbagy

    (Prince Sattam bin Abdulaziz University
    Menoufia University)

  • A. A. Mousa

    (Menoufia University
    Taif University)

  • M. A. Farag

    (Menoufia University)

Abstract

A new intelligent computing based approach for solving multi-objective unit commitment problem (MOUCP) and its fuzzy model is presented in this paper. The proposed intelligent approach combines binary-real-coded genetic algorithm (BRCGA) and K-means clustering technique to find the optimal schedule of the generation units in MOUCP. BRCGA is used in order to tackle both the unit scheduling and load dispatch problems. While, K-means clustering technique is used to divide the population into a specific number of subpopulation with-dynamic-sizes. In this way, different genetic algorithm (GA) operators can apply to each sub-population, instead of using the same GA operators for all population. The proposed intelligent algorithm has been tested on standard systems of MOUCPs. The results showed the efficiency of the proposed approach to solve (MOUCP) and its fuzzy model.

Suggested Citation

  • M. A. El-Shorbagy & A. A. Mousa & M. A. Farag, 2019. "An intelligent computing technique based on a dynamic-size subpopulations for unit commitment problem," OPSEARCH, Springer;Operational Research Society of India, vol. 56(3), pages 911-944, September.
  • Handle: RePEc:spr:opsear:v:56:y:2019:i:3:d:10.1007_s12597-019-00388-x
    DOI: 10.1007/s12597-019-00388-x
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s12597-019-00388-x
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s12597-019-00388-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yang, Zhile & Li, Kang & Guo, Yuanjun & Feng, Shengzhong & Niu, Qun & Xue, Yusheng & Foley, Aoife, 2019. "A binary symmetric based hybrid meta-heuristic method for solving mixed integer unit commitment problem integrating with significant plug-in electric vehicles," Energy, Elsevier, vol. 170(C), pages 889-905.
    2. M. A. El-Shorbagy & A. Y. Ayoub & A. A. Mousa & I. M. El-Desoky, 2019. "An enhanced genetic algorithm with new mutation for cluster analysis," Computational Statistics, Springer, vol. 34(3), pages 1355-1392, September.
    3. M.A. El-Shorbagy & A.A. Mousa & M. Farag, 2017. "Solving Nonlinear Single-Unit Commitment Problem by Genetic Algorithm Based Clustering Technique," Review of Computer Engineering Research, Conscientia Beam, vol. 4(1), pages 11-29.
    4. Anand, Himanshu & Narang, Nitin & Dhillon, J.S., 2019. "Multi-objective combined heat and power unit commitment using particle swarm optimization," Energy, Elsevier, vol. 172(C), pages 794-807.
    5. Melamed, Michal & Ben-Tal, Aharon & Golany, Boaz, 2018. "A multi-period unit commitment problem under a new hybrid uncertainty set for a renewable energy source," Renewable Energy, Elsevier, vol. 118(C), pages 909-917.
    6. M.A El-Shorbagy & A.A Mousa & M Farag, 2017. "Solving Nonlinear Single-Unit Commitment Problem by Genetic Algorithm Based Clustering Technique," Review of Computer Engineering Research, Conscientia Beam, vol. 4(1), pages 11-29.
    7. El-Shorbagy, M.A. & Mousa, A.A. & Nasr, S.M., 2016. "A chaos-based evolutionary algorithm for general nonlinear programming problems," Chaos, Solitons & Fractals, Elsevier, vol. 85(C), pages 8-21.
    8. Abdelsalam, Ali M. & El-Shorbagy, M.A., 2018. "Optimization of wind turbines siting in a wind farm using genetic algorithm based local search," Renewable Energy, Elsevier, vol. 123(C), pages 748-755.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhu, Xiaodong & Zhao, Shihao & Yang, Zhile & Zhang, Ning & Xu, Xinzhi, 2022. "A parallel meta-heuristic method for solving large scale unit commitment considering the integration of new energy sectors," Energy, Elsevier, vol. 238(PC).
    2. M. A. El-Shorbagy & A. Y. Ayoub & A. A. Mousa & I. M. El-Desoky, 2019. "An enhanced genetic algorithm with new mutation for cluster analysis," Computational Statistics, Springer, vol. 34(3), pages 1355-1392, September.
    3. Basu, Mousumi, 2023. "Fuel constrained commitment scheduling for combined heat and power dispatch incorporating electric vehicle parking lot," Energy, Elsevier, vol. 276(C).
    4. Mohammed A. El-Shorbagy & Islam M. Eldesoky & Mohamady M. Basyouni & Islam Nassar & Adel M. El-Refaey, 2022. "Chaotic Search-Based Salp Swarm Algorithm for Dealing with System of Nonlinear Equations and Power System Applications," Mathematics, MDPI, vol. 10(9), pages 1-30, April.
    5. Wang, Weida & Chen, Yincong & Yang, Chao & Li, Ying & Xu, Bin & Xiang, Changle, 2022. "An enhanced hypotrochoid spiral optimization algorithm based intertwined optimal sizing and control strategy of a hybrid electric air-ground vehicle," Energy, Elsevier, vol. 257(C).
    6. Pan, Jeng-Shyang & Hu, Pei & Chu, Shu-Chuan, 2021. "Binary fish migration optimization for solving unit commitment," Energy, Elsevier, vol. 226(C).
    7. Donghui Wang & Chunming Liu, 2019. "Combination Optimization Configuration Method of Capacitance and Resistance Devices for Suppressing DC Bias in Transformers," Energies, MDPI, vol. 12(9), pages 1-13, May.
    8. Wu, Chutian & Yang, Xiaolei & Zhu, Yaxin, 2021. "On the design of potential turbine positions for physics-informed optimization of wind farm layout," Renewable Energy, Elsevier, vol. 164(C), pages 1108-1120.
    9. Yuanhang Qi & Peng Hou & Guisong Liu & Rongsen Jin & Zhile Yang & Guangya Yang & Zhaoyang Dong, 2021. "Cable Connection Optimization for Heterogeneous Offshore Wind Farms via a Voronoi Diagram Based Adaptive Particle Swarm Optimization with Local Search," Energies, MDPI, vol. 14(3), pages 1-21, January.
    10. Yang, Yuqi & Zhou, Jianzhong & Liu, Guangbiao & Mo, Li & Wang, Yongqiang & Jia, Benjun & He, Feifei, 2020. "Multi-plan formulation of hydropower generation considering uncertainty of wind power," Applied Energy, Elsevier, vol. 260(C).
    11. Dhunny, A.Z. & Timmons, D.S. & Allam, Z. & Lollchund, M.R. & Cunden, T.S.M., 2020. "An economic assessment of near-shore wind farm development using a weather research forecast-based genetic algorithm model," Energy, Elsevier, vol. 201(C).
    12. Houssem R. E. H. Bouchekara & Yusuf A. Sha’aban & Mohammad S. Shahriar & Makbul A. M. Ramli & Abdullahi A. Mas’ud, 2023. "Wind Farm Layout Optimization/Expansion with Real Wind Turbines Using a Multi-Objective EA Based on an Enhanced Inverted Generational Distance Metric Combined with the Two-Archive Algorithm 2," Sustainability, MDPI, vol. 15(3), pages 1-32, January.
    13. Dong, Jizhe & Han, Shunjie & Shao, Xiangxin & Tang, Like & Chen, Renhui & Wu, Longfei & Zheng, Cunlong & Li, Zonghao & Li, Haolin, 2021. "Day-ahead wind-thermal unit commitment considering historical virtual wind power data," Energy, Elsevier, vol. 235(C).
    14. Zhao, Shihao & Li, Kang & Yang, Zhile & Xu, Xinzhi & Zhang, Ning, 2022. "A new power system active rescheduling method considering the dispatchable plug-in electric vehicles and intermittent renewable energies," Applied Energy, Elsevier, vol. 314(C).
    15. Mirzaei, Mohammad Amin & Sadeghi-Yazdankhah, Ahmad & Mohammadi-Ivatloo, Behnam & Marzband, Mousa & Shafie-khah, Miadreza & Catalão, João P.S., 2019. "Integration of emerging resources in IGDT-based robust scheduling of combined power and natural gas systems considering flexible ramping products," Energy, Elsevier, vol. 189(C).
    16. Hongxia Liu & Huiling Wang & Zongtang Xie, 2019. "Wind utilization and carbon emissions equilibrium: Scheduling strategy for wind-thermal generation system," Energy & Environment, , vol. 30(6), pages 1111-1131, September.
    17. Xiong, Guojiang & Shuai, Maohang & Hu, Xiao, 2022. "Combined heat and power economic emission dispatch using improved bare-bone multi-objective particle swarm optimization," Energy, Elsevier, vol. 244(PB).
    18. Papadimitrakis, M. & Giamarelos, N. & Stogiannos, M. & Zois, E.N. & Livanos, N.A.-I. & Alexandridis, A., 2021. "Metaheuristic search in smart grid: A review with emphasis on planning, scheduling and power flow optimization applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    19. Qun Niu & Kecheng Jiang & Zhile Yang, 2019. "An Improved, Negatively Correlated Search for Solving the Unit Commitment Problem’s Integration with Electric Vehicles," Sustainability, MDPI, vol. 11(24), pages 1-21, December.
    20. Dong, Jizhe & Li, Yuanhan & Zuo, Shi & Wu, Xiaomei & Zhang, Zuyao & Du, Jiang, 2023. "An intraperiod arbitrary ramping-rate changing model in unit commitment," Energy, Elsevier, vol. 284(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:opsear:v:56:y:2019:i:3:d:10.1007_s12597-019-00388-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.