IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v11y2023i2p346-d1029916.html
   My bibliography  Save this article

Mixed-Integer Conic Formulation of Unit Commitment with Stochastic Wind Power

Author

Listed:
  • Haiyan Zheng

    (College of Mathematics and Information Science, Guangxi University, Nanning 530004, China)

  • Liying Huang

    (College of Mathematics and Information Science, Guangxi University, Nanning 530004, China)

  • Ran Quan

    (College of Science, Henan University of Technology, Zhengzhou 450001, China)

Abstract

Due to the high randomness and volatility of renewable energy sources such as wind energy, the traditional thermal unit commitment (UC) model is no longer applicable. In this paper, in order to reduce the possible negative effects of an inaccurate wind energy forecast, the chance-constrained programming (CCP) method is used to study the UC problem with uncertainty wind power generation, and chance constraints such as power balance and spinning reserve are satisfied with a predetermined probability. In order to effectively solve the CCP problem, first, we used the sample average approximation (SAA) method to transform the chance constraints into deterministic constraints and to obtain a mixed-integer quadratic programming (MIQP) model. Then, the quadratic terms were incorporated into the constraints by introducing some auxiliary variables, and some second-order cone constraints were formed by combining them with the output characteristics of thermal unit; therefore, a tighter mixed-integer second-order cone programming (MISOCP) formulation was obtained. Finally, we applied this method to some systems including 10 to 100 thermal units and 1 to 2 wind units, and we invoked MOSEK in MATLAB to solve the MISOCP formulation. The numerical results obtained within 24 h confirm that not only is the MISOCP formulation a successful reformulation that can achieve better suboptimal solutions, but it is also a suitable method for solving the large-scale uncertain UC problem. In addition, for systems of up to 40 units within 24 h that do not consider wind power and pollution emissions, the numerical results were compared with those of previously published methods, showing that the MISOCP formulation is very promising, given its excellent performance.

Suggested Citation

  • Haiyan Zheng & Liying Huang & Ran Quan, 2023. "Mixed-Integer Conic Formulation of Unit Commitment with Stochastic Wind Power," Mathematics, MDPI, vol. 11(2), pages 1-16, January.
  • Handle: RePEc:gam:jmathe:v:11:y:2023:i:2:p:346-:d:1029916
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/11/2/346/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/11/2/346/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yang, Linfeng & Li, Wei & Xu, Yan & Zhang, Cuo & Chen, Shifei, 2021. "Two novel locally ideal three-period unit commitment formulations in power systems," Applied Energy, Elsevier, vol. 284(C).
    2. Shahbazitabar, Maryam & Abdi, Hamdi, 2018. "A novel priority-based stochastic unit commitment considering renewable energy sources and parking lot cooperation," Energy, Elsevier, vol. 161(C), pages 308-324.
    3. Yang, Hongming & Liang, Rui & Yuan, Yuan & Chen, Bowen & Xiang, Sheng & Liu, Junpeng & Zhao, Huan & Ackom, Emmanuel, 2022. "Distributionally robust optimal dispatch in the power system with high penetration of wind power based on net load fluctuation data," Applied Energy, Elsevier, vol. 313(C).
    4. Abdi, Hamdi, 2021. "Profit-based unit commitment problem: A review of models, methods, challenges, and future directions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    5. Zhu, Xiaodong & Zhao, Shihao & Yang, Zhile & Zhang, Ning & Xu, Xinzhi, 2022. "A parallel meta-heuristic method for solving large scale unit commitment considering the integration of new energy sectors," Energy, Elsevier, vol. 238(PC).
    6. Ji, Bin & Yuan, Xiaohui & Chen, Zhihuan & Tian, Hao, 2014. "Improved gravitational search algorithm for unit commitment considering uncertainty of wind power," Energy, Elsevier, vol. 67(C), pages 52-62.
    7. Vatanpour, Mohsen & Sadeghi Yazdankhah, Ahmad, 2018. "The impact of energy storage modeling in coordination with wind farm and thermal units on security and reliability in a stochastic unit commitment," Energy, Elsevier, vol. 162(C), pages 476-490.
    8. Zhou, Bo & Ai, Xiaomeng & Fang, Jiakun & Yao, Wei & Zuo, Wenping & Chen, Zhe & Wen, Jinyu, 2019. "Data-adaptive robust unit commitment in the hybrid AC/DC power system," Applied Energy, Elsevier, vol. 254(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dong, Jizhe & Han, Shunjie & Shao, Xiangxin & Tang, Like & Chen, Renhui & Wu, Longfei & Zheng, Cunlong & Li, Zonghao & Li, Haolin, 2021. "Day-ahead wind-thermal unit commitment considering historical virtual wind power data," Energy, Elsevier, vol. 235(C).
    2. Qing, Ke & Huang, Qi & Du, Yuefang & Jiang, Lin & Bamisile, Olusola & Hu, Weihao, 2023. "Distributionally robust unit commitment with an adjustable uncertainty set and dynamic demand response," Energy, Elsevier, vol. 262(PA).
    3. Luis Montero & Antonio Bello & Javier Reneses, 2022. "A Review on the Unit Commitment Problem: Approaches, Techniques, and Resolution Methods," Energies, MDPI, vol. 15(4), pages 1-40, February.
    4. Zhu, Xiaodong & Zhao, Shihao & Yang, Zhile & Zhang, Ning & Xu, Xinzhi, 2022. "A parallel meta-heuristic method for solving large scale unit commitment considering the integration of new energy sectors," Energy, Elsevier, vol. 238(PC).
    5. Qiu, Haifeng & Sun, Qirun & Lu, Xi & Beng Gooi, Hoay & Zhang, Suhan, 2022. "Optimality-feasibility-aware multistage unit commitment considering nonanticipative realization of uncertainty," Applied Energy, Elsevier, vol. 327(C).
    6. Biéron, M. & Le Dréau, J. & Haas, B., 2023. "Assessment of the marginal technologies reacting to demand response events: A French case-study," Energy, Elsevier, vol. 275(C).
    7. Layon Mescolin de Oliveira & Ivo Chaves da Silva Junior & Ramon Abritta, 2023. "A Space Reduction Heuristic for Thermal Unit Commitment Considering Ramp Constraints and Large-Scale Generation Systems," Energies, MDPI, vol. 16(14), pages 1-15, July.
    8. Nikolaidis, Pavlos & Poullikkas, Andreas, 2021. "A novel cluster-based spinning reserve dynamic model for wind and PV power reinforcement," Energy, Elsevier, vol. 234(C).
    9. Feng, Zhong-kai & Niu, Wen-jing & Wang, Wen-chuan & Zhou, Jian-zhong & Cheng, Chun-tian, 2019. "A mixed integer linear programming model for unit commitment of thermal plants with peak shaving operation aspect in regional power grid lack of flexible hydropower energy," Energy, Elsevier, vol. 175(C), pages 618-629.
    10. Jiang, Sufan & Gao, Shan & Pan, Guangsheng & Zhao, Xin & Liu, Yu & Guo, Yasen & Wang, Sicheng, 2020. "A novel robust security constrained unit commitment model considering HVDC regulation," Applied Energy, Elsevier, vol. 278(C).
    11. Bingke Yan & Bo Wang & Lin Zhu & Hesen Liu & Yilu Liu & Xingpei Ji & Dichen Liu, 2015. "A Novel, Stable, and Economic Power Sharing Scheme for an Autonomous Microgrid in the Energy Internet," Energies, MDPI, vol. 8(11), pages 1-24, November.
    12. Yuan, Xiaohui & Chen, Zhihuan & Yuan, Yanbin & Huang, Yuehua, 2015. "Design of fuzzy sliding mode controller for hydraulic turbine regulating system via input state feedback linearization method," Energy, Elsevier, vol. 93(P1), pages 173-187.
    13. Huo, Zhihong & Xu, Chang, 2022. "Distributed cooperative automatic generation control and multi-event triggered mechanisms co-design for networked wind-integrated power systems," Renewable Energy, Elsevier, vol. 193(C), pages 41-56.
    14. Ceran, Bartosz, 2019. "The concept of use of PV/WT/FC hybrid power generation system for smoothing the energy profile of the consumer," Energy, Elsevier, vol. 167(C), pages 853-865.
    15. Bai, Yang & Zhong, Haiwang & Xia, Qing & Kang, Chongqing & Xie, Le, 2015. "A decomposition method for network-constrained unit commitment with AC power flow constraints," Energy, Elsevier, vol. 88(C), pages 595-603.
    16. Schulze, Tim & McKinnon, Ken, 2016. "The value of stochastic programming in day-ahead and intra-day generation unit commitment," Energy, Elsevier, vol. 101(C), pages 592-605.
    17. Diaa Salman & Mehmet Kusaf, 2021. "Short-Term Unit Commitment by Using Machine Learning to Cover the Uncertainty of Wind Power Forecasting," Sustainability, MDPI, vol. 13(24), pages 1-22, December.
    18. Ying-Yi Hong & Gerard Francesco DG. Apolinario, 2021. "Uncertainty in Unit Commitment in Power Systems: A Review of Models, Methods, and Applications," Energies, MDPI, vol. 14(20), pages 1-47, October.
    19. Wilberforce, Tabbi & El Hassan, Zaki & Durrant, A. & Thompson, J. & Soudan, Bassel & Olabi, A.G., 2019. "Overview of ocean power technology," Energy, Elsevier, vol. 175(C), pages 165-181.
    20. Wang, Wenxiao & Li, Chaoshun & Liao, Xiang & Qin, Hui, 2017. "Study on unit commitment problem considering pumped storage and renewable energy via a novel binary artificial sheep algorithm," Applied Energy, Elsevier, vol. 187(C), pages 612-626.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:11:y:2023:i:2:p:346-:d:1029916. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.