IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v235y2021ics0360544221016820.html
   My bibliography  Save this article

Optimization based method to develop representative driving cycle for real-world fuel consumption estimation

Author

Listed:
  • Cui, Yuepeng
  • Xu, Hao
  • Zou, Fumin
  • Chen, Zhihui
  • Gong, Kuangmin

Abstract

The lack of representative driving cycles is cited as one of main reasons for the increasing gap between vehicle test cycle and real-world fuel consumptions. Many past studies employed random and semi-random methods for developing driving cycles, by which the driving cycles aligned with real world driving characteristics may not be obtained. Besides, most of the existing methodologies were proposed for relative long trajectories, and cannot handle short trajectories “chopped” for road segments. Therefore, a new Simulated Annealing (SA) based method is proposed, resulting in a speed-acceleration pattern better aligned with real-world driving characteristics. The speed-acceleration status transitions are directly derived from the sample snippets rather than idealized trip trajectories based on SA optimization. In a case study in Fujian Province, China, the SA-based method could stably converge to observed values as the number of iterations increases and it greatly reduces the error by up to 23% over traditional methods. Finally, the accuracy of fuel consumption estimation is improved by imposing restriction on the starting and ending speeds of driving cycles. The method could improve fuel consumption estimation and also provide a better understanding on regional driving pattern, it can be used as a valuable tool for supporting energy and climate policies.

Suggested Citation

  • Cui, Yuepeng & Xu, Hao & Zou, Fumin & Chen, Zhihui & Gong, Kuangmin, 2021. "Optimization based method to develop representative driving cycle for real-world fuel consumption estimation," Energy, Elsevier, vol. 235(C).
  • Handle: RePEc:eee:energy:v:235:y:2021:i:c:s0360544221016820
    DOI: 10.1016/j.energy.2021.121434
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544221016820
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2021.121434?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Rechkemmer, Sabrina Kathrin & Zang, Xiaoyun & Zhang, Weimin & Sawodny, Oliver, 2019. "Lifetime optimized charging strategy of Li-ion cells based on daily driving cycle of electric two-wheelers," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    2. Zhang, Shaojun & Wu, Ye & Liu, Huan & Huang, Ruikun & Un, Puikei & Zhou, Yu & Fu, Lixin & Hao, Jiming, 2014. "Real-world fuel consumption and CO2 (carbon dioxide) emissions by driving conditions for light-duty passenger vehicles in China," Energy, Elsevier, vol. 69(C), pages 247-257.
    3. Huo, Hong & Yao, Zhiliang & He, Kebin & Yu, Xin, 2011. "Fuel consumption rates of passenger cars in China: Labels versus real-world," Energy Policy, Elsevier, vol. 39(11), pages 7130-7135.
    4. ., 2020. "A European single market without tax harmonization," Chapters, in: Tax Tyranny, chapter 10, pages 145-162, Edward Elgar Publishing.
    5. Sierra, Jaime Cevallos, 2016. "Estimating road transport fuel consumption in Ecuador," Energy Policy, Elsevier, vol. 92(C), pages 359-368.
    6. Thomas, Bill, 2004. "Congressional Budget Office," World Trade Review, Cambridge University Press, vol. 3(2), pages 267-276, July.
    7. ., 2020. "Tensions and struggles in Europe-level science," Chapters, in: Science Evaluation and Status Creation, chapter 3, pages 32-50, Edward Elgar Publishing.
    8. Wang, Jinghui & Rakha, Hesham A., 2016. "Fuel consumption model for conventional diesel buses," Applied Energy, Elsevier, vol. 170(C), pages 394-402.
    9. Banzhaf, H. Spencer & Kasim, M. Taha, 2019. "Fuel consumption and gasoline prices: The role of assortative matching between households and automobiles," Journal of Environmental Economics and Management, Elsevier, vol. 95(C), pages 1-25.
    10. Mourad, M. & Mahmoud, Khaled R.M., 2018. "Performance investigation of passenger vehicle fueled by propanol/gasoline blend according to a city driving cycle," Energy, Elsevier, vol. 149(C), pages 741-749.
    11. ., 2020. "The European Union and transnational corporations," Chapters, in: Evolutionary Spatial Economics, chapter 25, pages 546-551, Edward Elgar Publishing.
    12. Pavlovic, J. & Ciuffo, B. & Fontaras, G. & Valverde, V. & Marotta, A., 2018. "How much difference in type-approval CO2 emissions from passenger cars in Europe can be expected from changing to the new test procedure (NEDC vs. WLTP)?," Transportation Research Part A: Policy and Practice, Elsevier, vol. 111(C), pages 136-147.
    13. Gong, Huiming & Zou, Yuan & Yang, Qingkai & Fan, Jie & Sun, Fengchun & Goehlich, Dietmar, 2018. "Generation of a driving cycle for battery electric vehicles:A case study of Beijing," Energy, Elsevier, vol. 150(C), pages 901-912.
    14. ., 2020. "European Union," Chapters, in: Evolutionary Spatial Economics, chapter 33, pages 596-631, Edward Elgar Publishing.
    15. Wang, Hewu & Zhang, Xiaobin & Ouyang, Minggao, 2015. "Energy consumption of electric vehicles based on real-world driving patterns: A case study of Beijing," Applied Energy, Elsevier, vol. 157(C), pages 710-719.
    16. Hongwen, He & Jinquan, Guo & Jiankun, Peng & Huachun, Tan & Chao, Sun, 2018. "Real-time global driving cycle construction and the application to economy driving pro system in plug-in hybrid electric vehicles," Energy, Elsevier, vol. 152(C), pages 95-107.
    17. Wang, Sinan & Chen, Kangda & Zhao, Fuquan & Hao, Han, 2019. "Technology pathways for complying with Corporate Average Fuel Consumption regulations up to 2030: A case study of China," Applied Energy, Elsevier, vol. 241(C), pages 257-277.
    18. Brady, John & O’Mahony, Margaret, 2016. "Development of a driving cycle to evaluate the energy economy of electric vehicles in urban areas," Applied Energy, Elsevier, vol. 177(C), pages 165-178.
    19. Luin, Blaž & Petelin, Stojan & Al-Mansour, Fouad, 2019. "Microsimulation of electric vehicle energy consumption," Energy, Elsevier, vol. 174(C), pages 24-32.
    20. Ali Ashtari & Eric Bibeau & Soheil Shahidinejad, 2014. "Using Large Driving Record Samples and a Stochastic Approach for Real-World Driving Cycle Construction: Winnipeg Driving Cycle," Transportation Science, INFORMS, vol. 48(2), pages 170-183, May.
    21. Tu, Wei & Santi, Paolo & Zhao, Tianhong & He, Xiaoyi & Li, Qingquan & Dong, Lei & Wallington, Timothy J. & Ratti, Carlo, 2019. "Acceptability, energy consumption, and costs of electric vehicle for ride-hailing drivers in Beijing," Applied Energy, Elsevier, vol. 250(C), pages 147-160.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Cui, Yuepeng & Zou, Fumin & Xu, Hao & Chen, Zhihui & Gong, Kuangmin, 2022. "A novel optimization-based method to develop representative driving cycle in various driving conditions," Energy, Elsevier, vol. 247(C).
    2. Carlos Santos-Iglesia & Pablo Fernández-Arias & Álvaro Antón-Sancho & Diego Vergara, 2022. "Energy Consumption of the Urban Transport Fleet in UNESCO World Heritage Sites: A Case Study of Ávila (Spain)," Sustainability, MDPI, vol. 14(9), pages 1-19, May.
    3. Kwangho Ko & Tongwon Lee & Seunghyun Jeong, 2021. "A Deep Learning Method for Monitoring Vehicle Energy Consumption with GPS Data," Sustainability, MDPI, vol. 13(20), pages 1-15, October.
    4. Wang, Yue & Li, Keqiang & Zeng, Xiaohua & Gao, Bolin & Hong, Jichao, 2022. "Energy consumption characteristics based driving conditions construction and prediction for hybrid electric buses energy management," Energy, Elsevier, vol. 245(C).
    5. Weinan He & Lei Duan & Zhuoyuan Zhang & Xu Zhao & Ying Cheng, 2022. "Analysis of the Characteristics of Real-World Emission Factors and VSP Distributions—A Case Study in Beijing," Sustainability, MDPI, vol. 14(18), pages 1-14, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cui, Yuepeng & Zou, Fumin & Xu, Hao & Chen, Zhihui & Gong, Kuangmin, 2022. "A novel optimization-based method to develop representative driving cycle in various driving conditions," Energy, Elsevier, vol. 247(C).
    2. Jakub Szczepkowski, 2022. "Marketing relacji w pracy brokera innowacji (Relationship Marketing in the Work of an Innovation Broker)," Research Reports, University of Warsaw, Faculty of Management, vol. 2(37), pages 48-56.
    3. Zhang, Jin & Wang, Zhenpo & Liu, Peng & Zhang, Zhaosheng, 2020. "Energy consumption analysis and prediction of electric vehicles based on real-world driving data," Applied Energy, Elsevier, vol. 275(C).
    4. Anastasiadou, Constantia & Pilcher, Nick & Gutu, Mavis & Panyik, Emese, 2023. "EU tourism and student identities in a pre-BREXIT UK," Annals of Tourism Research, Elsevier, vol. 99(C).
    5. José I. Huertas & Michael Giraldo & Luis F. Quirama & Jenny Díaz, 2018. "Driving Cycles Based on Fuel Consumption," Energies, MDPI, vol. 11(11), pages 1-13, November.
    6. Andrea Di Martino & Seyed Mahdi Miraftabzadeh & Michela Longo, 2022. "Strategies for the Modelisation of Electric Vehicle Energy Consumption: A Review," Energies, MDPI, vol. 15(21), pages 1-20, October.
    7. Qiao, Qinyu & Zhao, Fuquan & Liu, Zongwei & He, Xin & Hao, Han, 2019. "Life cycle greenhouse gas emissions of Electric Vehicles in China: Combining the vehicle cycle and fuel cycle," Energy, Elsevier, vol. 177(C), pages 222-233.
    8. Zhang, Jin & Wang, Zhenpo & Liu, Peng & Zhang, Zhaosheng & Li, Xiaoyu & Qu, Changhui, 2019. "Driving cycles construction for electric vehicles considering road environment: A case study in Beijing," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    9. Wu, Ziyang & Wang, Can & Wolfram, Paul & Zhang, Yaxin & Sun, Xin & Hertwich, Edgar, 2019. "Assessing electric vehicle policy with region-specific carbon footprints," Applied Energy, Elsevier, vol. 256(C).
    10. Fan, Pengfei & Yin, Hang & Lu, Hongyu & Wu, Yizheng & Zhai, Zhiqiang & Yu, Lei & Song, Guohua, 2023. "Which factor contributes more to the fuel consumption gap between in-laboratory vs. real-world driving conditions? An independent component analysis," Energy Policy, Elsevier, vol. 182(C).
    11. Gong, Huiming & Zou, Yuan & Yang, Qingkai & Fan, Jie & Sun, Fengchun & Goehlich, Dietmar, 2018. "Generation of a driving cycle for battery electric vehicles:A case study of Beijing," Energy, Elsevier, vol. 150(C), pages 901-912.
    12. Xinglong Liu & Fuquan Zhao & Han Hao & Kangda Chen & Zongwei Liu & Hassan Babiker & Amer Ahmad Amer, 2020. "From NEDC to WLTP: Effect on the Energy Consumption, NEV Credits, and Subsidies Policies of PHEV in the Chinese Market," Sustainability, MDPI, vol. 12(14), pages 1-19, July.
    13. Yu, Rujie & Ren, Huanhuan & Liu, Yong & Yu, Biying, 2021. "Gap between on-road and official fuel efficiency of passenger vehicles in China," Energy Policy, Elsevier, vol. 152(C).
    14. Kangda Chen & Fuquan Zhao & Xinglong Liu & Han Hao & Zongwei Liu, 2021. "Impacts of the New Worldwide Light-Duty Test Procedure on Technology Effectiveness and China’s Passenger Vehicle Fuel Consumption Regulations," IJERPH, MDPI, vol. 18(6), pages 1-20, March.
    15. Liu, Kai & Wang, Jiangbo & Yamamoto, Toshiyuki & Morikawa, Takayuki, 2016. "Modelling the multilevel structure and mixed effects of the factors influencing the energy consumption of electric vehicles," Applied Energy, Elsevier, vol. 183(C), pages 1351-1360.
    16. Li, Yi & Wang, Zhaohua & Wang, Ke & Zhang, Bin, 2021. "Fuel economy of Chinese light-duty car manufacturers: An efficiency analysis perspective," Energy, Elsevier, vol. 220(C).
    17. Salvo, Orlando de & Vaz de Almeida, Flávio G., 2019. "Influence of technologies on energy efficiency results of official Brazilian tests of vehicle energy consumption," Applied Energy, Elsevier, vol. 241(C), pages 98-112.
    18. Ben Dror, Maya & Qin, Lanzhi & An, Feng, 2019. "The gap between certified and real-world passenger vehicle fuel consumption in China measured using a mobile phone application data," Energy Policy, Elsevier, vol. 128(C), pages 8-16.
    19. Aderiana Mutheu Mbandi & Jan R. Böhnke & Dietrich Schwela & Harry Vallack & Mike R. Ashmore & Lisa Emberson, 2019. "Estimating On-Road Vehicle Fuel Economy in Africa: A Case Study Based on an Urban Transport Survey in Nairobi, Kenya," Energies, MDPI, vol. 12(6), pages 1-28, March.
    20. Cha, Kyoung-Soo & Kim, Dong-Min & Jung, Young-Hoon & Lim, Myung-Seop, 2020. "Wound field synchronous motor with hybrid circuit for neighborhood electric vehicle traction improving fuel economy," Applied Energy, Elsevier, vol. 263(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:235:y:2021:i:c:s0360544221016820. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.