IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v69y2014icp247-257.html
   My bibliography  Save this article

Real-world fuel consumption and CO2 (carbon dioxide) emissions by driving conditions for light-duty passenger vehicles in China

Author

Listed:
  • Zhang, Shaojun
  • Wu, Ye
  • Liu, Huan
  • Huang, Ruikun
  • Un, Puikei
  • Zhou, Yu
  • Fu, Lixin
  • Hao, Jiming

Abstract

The increasing discrepancy between on-road and type-approval fuel consumption for LDPVs (light-duty passenger vehicles) has attracted tremendous attention. We measured on-road emissions for 60 LDPVs in three China's cities and calculated their fuel consumption and CO2 (carbon dioxide) emissions. We further evaluated the impacts of variations in area-averaged speed on relative fuel consumption of gasoline LDPVs for the UAB (urban area of Beijing). On-road fuel consumption under the average driving pattern is 10 ± 2% higher than that normalized to the NEDC (new European driving cycle) cycle for all tested vehicles, and the on-road NEDC-normalized fuel consumption is higher by 30 ± 12% compared to type-approval values for gasoline vehicles. We observed very strong correlations between relative fuel consumption and average speed. Traffic control applied to LDPVs driving within the UAB during weekdays can substantially reduce total fleet fuel consumption by 23 ± 5% during restriction hours by limiting vehicle use and improving driving conditions. Our results confirmed that a new cycle for the type approval test for LDPVs with more real-world driving features is of great necessity. Furthermore, enhanced traffic control measures could play an important role in mitigating real-world fuel consumption and CO2 emissions for LDPVs in China.

Suggested Citation

  • Zhang, Shaojun & Wu, Ye & Liu, Huan & Huang, Ruikun & Un, Puikei & Zhou, Yu & Fu, Lixin & Hao, Jiming, 2014. "Real-world fuel consumption and CO2 (carbon dioxide) emissions by driving conditions for light-duty passenger vehicles in China," Energy, Elsevier, vol. 69(C), pages 247-257.
  • Handle: RePEc:eee:energy:v:69:y:2014:i:c:p:247-257
    DOI: 10.1016/j.energy.2014.02.103
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544214002503
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2014.02.103?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zervas, Efthimios & Poulopoulos, Stavros & Philippopoulos, Constantinos, 2006. "CO2 emissions change from the introduction of diesel passenger cars: Case of Greece," Energy, Elsevier, vol. 31(14), pages 2915-2925.
    2. Huo, Hong & Yao, Zhiliang & He, Kebin & Yu, Xin, 2011. "Fuel consumption rates of passenger cars in China: Labels versus real-world," Energy Policy, Elsevier, vol. 39(11), pages 7130-7135.
    3. Zhang, Shaojun & Wu, Ye & Liu, Huan & Huang, Ruikun & Yang, Liuhanzi & Li, Zhenhua & Fu, Lixin & Hao, Jiming, 2014. "Real-world fuel consumption and CO2 emissions of urban public buses in Beijing," Applied Energy, Elsevier, vol. 113(C), pages 1645-1655.
    4. Ou, Xunmin & Zhang, Xiliang & Chang, Shiyan, 2010. "Scenario analysis on alternative fuel/vehicle for China's future road transport: Life-cycle energy demand and GHG emissions," Energy Policy, Elsevier, vol. 38(8), pages 3943-3956, August.
    5. Hao, Han & Geng, Yong & Wang, Hewu & Ouyang, Minggao, 2014. "Regional disparity of urban passenger transport associated GHG (greenhouse gas) emissions in China: A review," Energy, Elsevier, vol. 68(C), pages 783-793.
    6. He, Kebin & Huo, Hong & Zhang, Qiang & He, Dongquan & An, Feng & Wang, Michael & Walsh, Michael P., 2005. "Oil consumption and CO2 emissions in China's road transport: current status, future trends, and policy implications," Energy Policy, Elsevier, vol. 33(12), pages 1499-1507, August.
    7. Huo, Hong & Wang, Michael, 2012. "Modeling future vehicle sales and stock in China," Energy Policy, Elsevier, vol. 43(C), pages 17-29.
    8. Ajanovic, Amela & Schipper, Lee & Haas, Reinhard, 2012. "The impact of more efficient but larger new passenger cars on energy consumption in EU-15 countries," Energy, Elsevier, vol. 48(1), pages 346-355.
    9. Wang, Haikun & Fu, Lixin & Bi, Jun, 2011. "CO2 and pollutant emissions from passenger cars in China," Energy Policy, Elsevier, vol. 39(5), pages 3005-3011, May.
    10. Hu, Xiaojun & Chang, Shiyan & Li, Jingjie & Qin, Yining, 2010. "Energy for sustainable road transportation in China: Challenges, initiatives and policy implications," Energy, Elsevier, vol. 35(11), pages 4289-4301.
    11. Fontaras, Georgios & Dilara, Panagiota, 2012. "The evolution of European passenger car characteristics 2000–2010 and its effects on real-world CO2 emissions and CO2 reduction policy," Energy Policy, Elsevier, vol. 49(C), pages 719-730.
    12. Marshall, Brandon M. & Kelly, Jarod C. & Lee, Tae-Kyung & Keoleian, Gregory A. & Filipi, Zoran, 2013. "Environmental assessment of plug-in hybrid electric vehicles using naturalistic drive cycles and vehicle travel patterns: A Michigan case study," Energy Policy, Elsevier, vol. 58(C), pages 358-370.
    13. Wagner, David Vance & An, Feng & Wang, Cheng, 2009. "Structure and impacts of fuel economy standards for passenger cars in China," Energy Policy, Elsevier, vol. 37(10), pages 3803-3811, October.
    14. Whitefoot, Kate S. & Skerlos, Steven J., 2012. "Design incentives to increase vehicle size created from the U.S. footprint-based fuel economy standards," Energy Policy, Elsevier, vol. 41(C), pages 402-411.
    15. Wang, Yunshi & Teter, Jacob & Sperling, Daniel, 2011. "China's soaring vehicle population: Even greater than forecasted?," Energy Policy, Elsevier, vol. 39(6), pages 3296-3306, June.
    16. Wang, Zhao & Jin, Yuefu & Wang, Michael & Wei, Wu, 2010. "New fuel consumption standards for Chinese passenger vehicles and their effects on reductions of oil use and CO2 emissions of the Chinese passenger vehicle fleet," Energy Policy, Elsevier, vol. 38(9), pages 5242-5250, September.
    17. González Palencia, Juan C. & Furubayashi, Takaaki & Nakata, Toshihiko, 2012. "Energy use and CO2 emissions reduction potential in passenger car fleet using zero emission vehicles and lightweight materials," Energy, Elsevier, vol. 48(1), pages 548-565.
    18. Wu, Ye & Yang, Zhengdong & Lin, Bohong & Liu, Huan & Wang, Renjie & Zhou, Boya & Hao, Jiming, 2012. "Energy consumption and CO2 emission impacts of vehicle electrification in three developed regions of China," Energy Policy, Elsevier, vol. 48(C), pages 537-550.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wu, Ye & Yang, Zhengdong & Lin, Bohong & Liu, Huan & Wang, Renjie & Zhou, Boya & Hao, Jiming, 2012. "Energy consumption and CO2 emission impacts of vehicle electrification in three developed regions of China," Energy Policy, Elsevier, vol. 48(C), pages 537-550.
    2. Liu, Yang & Wang, Yu & Huo, Hong, 2013. "Temporal and spatial variations in on-road energy use and CO2 emissions in China, 1978–2008," Energy Policy, Elsevier, vol. 61(C), pages 544-550.
    3. Zheng, Bo & Zhang, Qiang & Borken-Kleefeld, Jens & Huo, Hong & Guan, Dabo & Klimont, Zbigniew & Peters, Glen P. & He, Kebin, 2015. "How will greenhouse gas emissions from motor vehicles be constrained in China around 2030?," Applied Energy, Elsevier, vol. 156(C), pages 230-240.
    4. Hao, Han & Wang, Hewu & Ouyang, Minggao, 2011. "Fuel conservation and GHG (Greenhouse gas) emissions mitigation scenarios for China’s passenger vehicle fleet," Energy, Elsevier, vol. 36(11), pages 6520-6528.
    5. Huo, Hong & Wang, Michael & Zhang, Xiliang & He, Kebin & Gong, Huiming & Jiang, Kejun & Jin, Yuefu & Shi, Yaodong & Yu, Xin, 2012. "Projection of energy use and greenhouse gas emissions by motor vehicles in China: Policy options and impacts," Energy Policy, Elsevier, vol. 43(C), pages 37-48.
    6. Zhang, Shaojun & Wu, Ye & Un, Puikei & Fu, Lixin & Hao, Jiming, 2016. "Modeling real-world fuel consumption and carbon dioxide emissions with high resolution for light-duty passenger vehicles in a traffic populated city," Energy, Elsevier, vol. 113(C), pages 461-471.
    7. Peng, Tianduo & Ou, Xunmin & Yuan, Zhiyi & Yan, Xiaoyu & Zhang, Xiliang, 2018. "Development and application of China provincial road transport energy demand and GHG emissions analysis model," Applied Energy, Elsevier, vol. 222(C), pages 313-328.
    8. Li, Yi & Wang, Zhaohua & Wang, Ke & Zhang, Bin, 2021. "Fuel economy of Chinese light-duty car manufacturers: An efficiency analysis perspective," Energy, Elsevier, vol. 220(C).
    9. Zhang, Chuanguo & Nian, Jiang, 2013. "Panel estimation for transport sector CO2 emissions and its affecting factors: A regional analysis in China," Energy Policy, Elsevier, vol. 63(C), pages 918-926.
    10. Wu, Libo & Huo, Hong, 2014. "Energy efficiency achievements in China׳s industrial and transport sectors: How do they rate?," Energy Policy, Elsevier, vol. 73(C), pages 38-46.
    11. Hao, Han & Liu, Zongwei & Zhao, Fuquan & Li, Weiqi & Hang, Wen, 2015. "Scenario analysis of energy consumption and greenhouse gas emissions from China's passenger vehicles," Energy, Elsevier, vol. 91(C), pages 151-159.
    12. Huo, Hong & He, Kebin & Wang, Michael & Yao, Zhiliang, 2012. "Vehicle technologies, fuel-economy policies, and fuel-consumption rates of Chinese vehicles," Energy Policy, Elsevier, vol. 43(C), pages 30-36.
    13. Hong Huo & Bo Zheng & Michael Wang & Qiang Zhang & Ke-Bin He, 2015. "Vehicular air pollutant emissions in China: evaluation of past control policies and future perspectives," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 20(5), pages 719-733, June.
    14. Ben Dror, Maya & Qin, Lanzhi & An, Feng, 2019. "The gap between certified and real-world passenger vehicle fuel consumption in China measured using a mobile phone application data," Energy Policy, Elsevier, vol. 128(C), pages 8-16.
    15. Hao, Han & Wang, Sinan & Liu, Zongwei & Zhao, Fuquan, 2016. "The impact of stepped fuel economy targets on automaker's light-weighting strategy: The China case," Energy, Elsevier, vol. 94(C), pages 755-765.
    16. Liu, Wen & Lund, Henrik & Mathiesen, Brian Vad, 2013. "Modelling the transport system in China and evaluating the current strategies towards the sustainable transport development," Energy Policy, Elsevier, vol. 58(C), pages 347-357.
    17. Li, Peilin & Zhao, Pengjun & Brand, Christian, 2018. "Future energy use and CO2 emissions of urban passenger transport in China: A travel behavior and urban form based approach," Applied Energy, Elsevier, vol. 211(C), pages 820-842.
    18. Zhang, Shaojun & Wu, Ye & Liu, Huan & Huang, Ruikun & Yang, Liuhanzi & Li, Zhenhua & Fu, Lixin & Hao, Jiming, 2014. "Real-world fuel consumption and CO2 emissions of urban public buses in Beijing," Applied Energy, Elsevier, vol. 113(C), pages 1645-1655.
    19. Zhang, Yong & Yu, Yifeng & Zou, Bai, 2011. "Analyzing public awareness and acceptance of alternative fuel vehicles in China: The case of EV," Energy Policy, Elsevier, vol. 39(11), pages 7015-7024.
    20. Tian Wu & Mengbo Zhang & Xunmin Ou, 2014. "Analysis of Future Vehicle Energy Demand in China Based on a Gompertz Function Method and Computable General Equilibrium Model," Energies, MDPI, vol. 7(11), pages 1-29, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:69:y:2014:i:c:p:247-257. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.