IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v170y2016icp394-402.html
   My bibliography  Save this article

Fuel consumption model for conventional diesel buses

Author

Listed:
  • Wang, Jinghui
  • Rakha, Hesham A.

Abstract

Existing bus fuel consumption models produce a bang–bang type of control, implying that drivers would have to either accelerate at full throttle or brake at full braking in order to minimize their fuel consumption levels. This is obviously not correct. The paper is intended to enhance bus fuel consumption modeling by circumventing the bang–bang control problem using the Virginia Tech Comprehensive Power-based Fuel consumption Model (VT-CPFM) framework. The model is calibrated for a series of diesel-powered buses using in-field second-by-second data because of a lack of publicly available bus fuel economy data. The results reveal that the bus fuel consumption rate is concave as a function of vehicle power instead of convex, as was the case with light duty vehicles. The model is calibrated for an entire bus series and demonstrated to accurately capture the fuel consumption behavior of each individual bus within its series. Furthermore, the model estimates are demonstrated to be consistent with in-field measurements. The optimum fuel economy cruising speeds range between 40 and 50km/h, which is slightly lower than that for gasoline-powered light duty vehicles (60–80km/h). Finally, the model is demonstrated to capture transient fuel consumption behavior better than the Motor Vehicle Emission Simulator (MOVES) and produces a better fit to field measurements compared to the Comprehensive Modal Emission Model (CMEM).

Suggested Citation

  • Wang, Jinghui & Rakha, Hesham A., 2016. "Fuel consumption model for conventional diesel buses," Applied Energy, Elsevier, vol. 170(C), pages 394-402.
  • Handle: RePEc:eee:appene:v:170:y:2016:i:c:p:394-402
    DOI: 10.1016/j.apenergy.2016.02.124
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S030626191630280X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2016.02.124?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Saboohi, Y. & Farzaneh, H., 2009. "Model for developing an eco-driving strategy of a passenger vehicle based on the least fuel consumption," Applied Energy, Elsevier, vol. 86(10), pages 1925-1932, October.
    2. Guo, Jiadong & Ge, Yunshan & Hao, Lijun & Tan, Jianwei & Peng, Zihang & Zhang, Chuanzhen, 2015. "Comparison of real-world fuel economy and emissions from parallel hybrid and conventional diesel buses fitted with selective catalytic reduction systems," Applied Energy, Elsevier, vol. 159(C), pages 433-441.
    3. Soylu, Seref, 2014. "The effects of urban driving conditions on the operating characteristics of conventional and hybrid electric city buses," Applied Energy, Elsevier, vol. 135(C), pages 472-482.
    4. Fiori, Chiara & Ahn, Kyoungho & Rakha, Hesham A., 2016. "Power-based electric vehicle energy consumption model: Model development and validation," Applied Energy, Elsevier, vol. 168(C), pages 257-268.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Cui, Yuepeng & Zou, Fumin & Xu, Hao & Chen, Zhihui & Gong, Kuangmin, 2022. "A novel optimization-based method to develop representative driving cycle in various driving conditions," Energy, Elsevier, vol. 247(C).
    2. Yushan Yang & Nuoya Gong & Keying Xie & Qingfei Liu, 2022. "Predicting Gasoline Vehicle Fuel Consumption in Energy and Environmental Impact Based on Machine Learning and Multidimensional Big Data," Energies, MDPI, vol. 15(5), pages 1-17, February.
    3. Miroslaw Smieszek & Vasyl Mateichyk & Jakub Mosciszewski, 2024. "The Influence of Stops on the Selected Route of the City ITS on the Energy Efficiency of the Public Bus," Energies, MDPI, vol. 17(16), pages 1-26, August.
    4. Wang, An & Tu, Ran & Xu, Junshi & Zhai, Zhiqiang & Hatzopoulou, Marianne, 2022. "A novel modal emission modelling approach and its application with on-road emission measurements," Applied Energy, Elsevier, vol. 306(PA).
    5. Hao Chen & Hesham A. Rakha, 2022. "Developing and Field Testing a Green Light Optimal Speed Advisory System for Buses," Energies, MDPI, vol. 15(4), pages 1-17, February.
    6. Huang, Yuhan & Ng, Elvin C.Y. & Zhou, John L. & Surawski, Nic C. & Chan, Edward F.C. & Hong, Guang, 2018. "Eco-driving technology for sustainable road transport: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 93(C), pages 596-609.
    7. Zacharof, Nikiforos & Özener, Orkun & Broekaert, Stijn & Özkan, Muammer & Samaras, Zissis & Fontaras, Georgios, 2023. "The impact of bus passenger occupancy, heating ventilation and air conditioning systems on energy consumption and CO2 emissions," Energy, Elsevier, vol. 272(C).
    8. Cui, Yuepeng & Xu, Hao & Zou, Fumin & Chen, Zhihui & Gong, Kuangmin, 2021. "Optimization based method to develop representative driving cycle for real-world fuel consumption estimation," Energy, Elsevier, vol. 235(C).
    9. Evangelos G. Giakoumis & George Triantafillou, 2018. "Analysis of the Effect of Vehicle, Driving and Road Parameters on the Transient Performance and Emissions of a Turbocharged Truck," Energies, MDPI, vol. 11(2), pages 1-21, January.
    10. Xing, Yang & Lv, Chen & Cao, Dongpu & Lu, Chao, 2020. "Energy oriented driving behavior analysis and personalized prediction of vehicle states with joint time series modeling," Applied Energy, Elsevier, vol. 261(C).
    11. Ma, Xiaolei & Miao, Ran & Wu, Xinkai & Liu, Xianglong, 2021. "Examining influential factors on the energy consumption of electric and diesel buses: A data-driven analysis of large-scale public transit network in Beijing," Energy, Elsevier, vol. 216(C).
    12. Li, Yangyang & Duan, Xiongbo & Fu, Jianqin & Liu, Jingping & Wang, Shuqian & Dong, Hao & Xie, Yunkun, 2019. "Development of a method for on-board measurement of instant engine torque and fuel consumption rate based on direct signal measurement and RGF modelling under vehicle transient operating conditions," Energy, Elsevier, vol. 189(C).
    13. Wang, Yusheng & Huang, Yongxi & Xu, Jiuping & Barclay, Nicole, 2017. "Optimal recharging scheduling for urban electric buses: A case study in Davis," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 100(C), pages 115-132.
    14. Shao, Shuai & Tan, Zhijia & Liu, Zhiyuan & Shang, Wenlong, 2022. "Balancing the GHG emissions and operational costs for a mixed fleet of electric buses and diesel buses," Applied Energy, Elsevier, vol. 328(C).
    15. Feng Mao & Zhiheng Li & Kai Zhang, 2021. "A Comparison of Carbon Dioxide Emissions between Battery Electric Buses and Conventional Diesel Buses," Sustainability, MDPI, vol. 13(9), pages 1-15, May.
    16. Jarosław Ziółkowski & Mateusz Oszczypała & Jerzy Małachowski & Joanna Szkutnik-Rogoż, 2021. "Use of Artificial Neural Networks to Predict Fuel Consumption on the Basis of Technical Parameters of Vehicles," Energies, MDPI, vol. 14(9), pages 1-23, May.
    17. Purnell, K. & Bruce, A.G. & MacGill, I., 2022. "Impacts of electrifying public transit on the electricity grid, from regional to state level analysis," Applied Energy, Elsevier, vol. 307(C).
    18. Rosero, Fredy & Fonseca, Natalia & López, José-María & Casanova, Jesús, 2020. "Real-world fuel efficiency and emissions from an urban diesel bus engine under transient operating conditions," Applied Energy, Elsevier, vol. 261(C).
    19. Sasanka Katreddi & Arvind Thiruvengadam, 2021. "Trip Based Modeling of Fuel Consumption in Modern Heavy-Duty Vehicles Using Artificial Intelligence," Energies, MDPI, vol. 14(24), pages 1-12, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Yangyang & Duan, Xiongbo & Fu, Jianqin & Liu, Jingping & Wang, Shuqian & Dong, Hao & Xie, Yunkun, 2019. "Development of a method for on-board measurement of instant engine torque and fuel consumption rate based on direct signal measurement and RGF modelling under vehicle transient operating conditions," Energy, Elsevier, vol. 189(C).
    2. Hao Chen & Hesham A. Rakha, 2020. "Battery Electric Vehicle Eco-Cooperative Adaptive Cruise Control in the Vicinity of Signalized Intersections," Energies, MDPI, vol. 13(10), pages 1-16, May.
    3. Zhang, Jian & Tang, Tie-Qiao & Yan, Yadan & Qu, Xiaobo, 2021. "Eco-driving control for connected and automated electric vehicles at signalized intersections with wireless charging," Applied Energy, Elsevier, vol. 282(PA).
    4. Rosero, Fredy & Fonseca, Natalia & López, José-María & Casanova, Jesús, 2020. "Real-world fuel efficiency and emissions from an urban diesel bus engine under transient operating conditions," Applied Energy, Elsevier, vol. 261(C).
    5. Vepsäläinen, Jari & Otto, Kevin & Lajunen, Antti & Tammi, Kari, 2019. "Computationally efficient model for energy demand prediction of electric city bus in varying operating conditions," Energy, Elsevier, vol. 169(C), pages 433-443.
    6. Xie, Yunkun & Li, Yangyang & Zhao, Zhichao & Dong, Hao & Wang, Shuqian & Liu, Jingping & Guan, Jinhuan & Duan, Xiongbo, 2020. "Microsimulation of electric vehicle energy consumption and driving range," Applied Energy, Elsevier, vol. 267(C).
    7. Yashraj Tripathy & Andrew McGordon & Anup Barai, 2020. "Improving Accessible Capacity Tracking at Low Ambient Temperatures for Range Estimation of Battery Electric Vehicles," Energies, MDPI, vol. 13(8), pages 1-18, April.
    8. K. S. Reddy & S. Aravindhan & Tapas K. Mallick, 2017. "Techno-Economic Investigation of Solar Powered Electric Auto-Rickshaw for a Sustainable Transport System," Energies, MDPI, vol. 10(6), pages 1-15, May.
    9. Stefano De Pinto & Pablo Camocardi & Christoforos Chatzikomis & Aldo Sorniotti & Francesco Bottiglione & Giacomo Mantriota & Pietro Perlo, 2020. "On the Comparison of 2- and 4-Wheel-Drive Electric Vehicle Layouts with Central Motors and Single- and 2-Speed Transmission Systems," Energies, MDPI, vol. 13(13), pages 1-24, June.
    10. Nikiforos Zacharof & Evangelos Bitsanis & Stijn Broekaert & Georgios Fontaras, 2024. "Reducing CO 2 Emissions of Hybrid Heavy-Duty Trucks and Buses: Paving the Transition to Low-Carbon Transport," Energies, MDPI, vol. 17(2), pages 1-26, January.
    11. Nan, Sirui & Tu, Ran & Li, Tiezhu & Sun, Jian & Chen, Haibo, 2022. "From driving behavior to energy consumption: A novel method to predict the energy consumption of electric bus," Energy, Elsevier, vol. 261(PA).
    12. Huang, Hai-chao & He, Hong-di & Peng, Zhong-ren, 2024. "Urban-scale estimation model of carbon emissions for ride-hailing electric vehicles during operational phase," Energy, Elsevier, vol. 293(C).
    13. Muhammad Khalid, 2019. "A Review on the Selected Applications of Battery-Supercapacitor Hybrid Energy Storage Systems for Microgrids," Energies, MDPI, vol. 12(23), pages 1-34, November.
    14. Feng, Zhanyu & Zhang, Jian & Jiang, Han & Yao, Xuejian & Qian, Yu & Zhang, Haiyan, 2024. "Energy consumption prediction strategy for electric vehicle based on LSTM-transformer framework," Energy, Elsevier, vol. 302(C).
    15. Soulios, V. & Loonen, R.C.G.M. & Metavitsiadis, V. & Hensen, J.L.M., 2018. "Computational performance analysis of overheating mitigation measures in parked vehicles," Applied Energy, Elsevier, vol. 231(C), pages 635-644.
    16. Li, Hai & Zheng, Peng & Zhang, Tingsheng & Zou, Yingquan & Pan, Yajia & Zhang, Zutao & Azam, Ali, 2021. "A high-efficiency energy regenerative shock absorber for powering auxiliary devices of new energy driverless buses," Applied Energy, Elsevier, vol. 295(C).
    17. Kapetanović, Marko & Núñez, Alfredo & van Oort, Niels & Goverde, Rob M.P., 2021. "Reducing fuel consumption and related emissions through optimal sizing of energy storage systems for diesel-electric trains," Applied Energy, Elsevier, vol. 294(C).
    18. Wang, Hua & Zhao, De & Meng, Qiang & Ong, Ghim Ping & Lee, Der-Horng, 2020. "Network-level energy consumption estimation for electric vehicles considering vehicle and user heterogeneity," Transportation Research Part A: Policy and Practice, Elsevier, vol. 132(C), pages 30-46.
    19. Yuan, Xinmei & Zhang, Chuanpu & Hong, Guokai & Huang, Xueqi & Li, Lili, 2017. "Method for evaluating the real-world driving energy consumptions of electric vehicles," Energy, Elsevier, vol. 141(C), pages 1955-1968.
    20. Sun, Xilei & Fu, Jianqin, 2024. "Many-objective optimization of BEV design parameters based on gradient boosting decision tree models and the NSGA-III algorithm considering the ambient temperature," Energy, Elsevier, vol. 288(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:170:y:2016:i:c:p:394-402. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.