IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v294y2024ics036054422400673x.html
   My bibliography  Save this article

Efficient production of furans by CO2-assisted pyrolysis of cellulose with carbon-supported Ni/Co catalysts

Author

Listed:
  • Zhang, Yu
  • Jiang, Haifeng
  • Li, Yuhang
  • Jia, Wei
  • Song, Meng
  • Hong, Wenpeng

Abstract

Production of high-grade bio-oil through catalytic pyrolysis technology was of great significance for alleviating the current energy shortage problem. This study synthesized a series of carbon-supported transition metal catalysts and their catalytic influence on the product distribution, behavior and liquid component during cellulose pyrolysis in N2 and CO2 atmosphere were analyzed. The obtained results indicated that the unique flower-like structure of carbon significantly elevated strengths to generate gaseous products and the enrichment of furan compounds during pyrolysis. The inclusion of CO2 further enhanced the secondary reaction of liquid product, and the maximum increment of syngas yield was 14.50 wt% after adding Ni/Co–C catalyst. Moreover, CO2 participated in thermal conversion process of biomass as an oxygen source and thus more sugars were converted into furans. The Ni/Co–C catalyst and CO2 produced favorable synergistic effect during cellulose pyrolysis, which resulted in the highest relative content of furans, with the value of 26.77%. Therefore, this study presented an efficient means to access to furan-rich bio-oil via catalytic pyrolysis of biomass.

Suggested Citation

  • Zhang, Yu & Jiang, Haifeng & Li, Yuhang & Jia, Wei & Song, Meng & Hong, Wenpeng, 2024. "Efficient production of furans by CO2-assisted pyrolysis of cellulose with carbon-supported Ni/Co catalysts," Energy, Elsevier, vol. 294(C).
  • Handle: RePEc:eee:energy:v:294:y:2024:i:c:s036054422400673x
    DOI: 10.1016/j.energy.2024.130901
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S036054422400673X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.130901?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Luo, Laipeng & Zhang, Zhiyi & Li, Chong & Nishu, & He, Fang & Zhang, Xingguang & Cai, Junmeng, 2021. "Insight into master plots method for kinetic analysis of lignocellulosic biomass pyrolysis," Energy, Elsevier, vol. 233(C).
    2. Lee, Jechan & Oh, Jeong-Ik & Ok, Yong Sik & Kwon, Eilhann E., 2017. "Study on susceptibility of CO2-assisted pyrolysis of various biomass to CO2," Energy, Elsevier, vol. 137(C), pages 510-517.
    3. Kan, Tao & Strezov, Vladimir & Evans, Tim & He, Jing & Kumar, Ravinder & Lu, Qiang, 2020. "Catalytic pyrolysis of lignocellulosic biomass: A review of variations in process factors and system structure," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    4. Lee, Jechan & Yang, Xiao & Cho, Seong-Heon & Kim, Jae-Kon & Lee, Sang Soo & Tsang, Daniel C.W. & Ok, Yong Sik & Kwon, Eilhann E., 2017. "Pyrolysis process of agricultural waste using CO2 for waste management, energy recovery, and biochar fabrication," Applied Energy, Elsevier, vol. 185(P1), pages 214-222.
    5. Wei Liu & Wenqin You & Wei Sun & Weisheng Yang & Akshay Korde & Yutao Gong & Yulin Deng, 2020. "Ambient-pressure and low-temperature upgrading of lignin bio-oil to hydrocarbons using a hydrogen buffer catalytic system," Nature Energy, Nature, vol. 5(10), pages 759-767, October.
    6. Xia, Sunwen & Yang, Haiping & Lei, shuaishuai & Lu, Wang & Cai, Ning & Xiao, Haoyu & Chen, Yingquan & Chen, Hanping, 2023. "Iron salt catalytic pyrolysis of biomass: Influence of iron salt type," Energy, Elsevier, vol. 262(PA).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Osvalda Senneca & Barbara Apicella & Carmela Russo & Francesca Cerciello, 2022. "Biomass Behavior upon Fast Pyrolysis in Inert and in CO 2 -Rich Atmospheres: Role of Lignin, Hemicellulose and Cellulose Content," Energies, MDPI, vol. 15(15), pages 1-13, July.
    2. Yoon, Kwangsuk & Lee, Sang Soo & Ok, Yong Sik & Kwon, Eilhann E. & Song, Hocheol, 2019. "Enhancement of syngas for H2 production via catalytic pyrolysis of orange peel using CO2 and bauxite residue," Applied Energy, Elsevier, vol. 254(C).
    3. Tao Peng & Wenbin Zhang & Baiyao Liang & Guanwu Lian & Yun Zhang & Wei Zhao, 2023. "Electrocatalytic valorization of lignocellulose-derived aromatics at industrial-scale current densities," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    4. Park, Jonghyun & Yim, Jun Ho & Cho, Seong-Heon & Jung, Sungyup & Tsang, Yiu Fai & Chen, Wei-Hsin & Jeon, Young Jae & Kwon, Eilhann E., 2024. "A virtuous cycle for thermal treatment of polyvinyl chloride and fermentation of lignocellulosic biomass," Applied Energy, Elsevier, vol. 362(C).
    5. Fan, Honggang & Gu, Jing & Wang, Yazhuo & Yuan, Haoran & Chen, Yong, 2022. "Insight into the pyrolysis kinetics of cellulose, xylan and lignin with the addition of potassium and calcium based on distributed activation energy model," Energy, Elsevier, vol. 243(C).
    6. Du, Hong & Ma, Xiuyun & Jiang, Miao & Yan, Peifang & Zhang, Z.Conrad, 2021. "Autocatalytic co-upgrading of biochar and pyrolysis gas to syngas," Energy, Elsevier, vol. 221(C).
    7. Zhang, Zhiyi & Li, Yingkai & Luo, Laipeng & Yellezuome, Dominic & Rahman, Md Maksudur & Zou, Jianfeng & Hu, Hangli & Cai, Junmeng, 2023. "Insight into kinetic and Thermodynamic Analysis methods for lignocellulosic biomass pyrolysis," Renewable Energy, Elsevier, vol. 202(C), pages 154-171.
    8. Wei, Yimeng & Zhuang, Zitong & Shi, Jinwen & Jin, Hui, 2024. "Thermochemical conversion of guaiacol with supercritical CO2: Experimental insights," Energy, Elsevier, vol. 299(C).
    9. Riva, Lorenzo & Nielsen, Henrik Kofoed & Skreiberg, Øyvind & Wang, Liang & Bartocci, Pietro & Barbanera, Marco & Bidini, Gianni & Fantozzi, Francesco, 2019. "Analysis of optimal temperature, pressure and binder quantity for the production of biocarbon pellet to be used as a substitute for coke," Applied Energy, Elsevier, vol. 256(C).
    10. Hemant Ghai & Deepak Sakhuja & Shikha Yadav & Preeti Solanki & Chayanika Putatunda & Ravi Kant Bhatia & Arvind Kumar Bhatt & Sunita Varjani & Yung-Hun Yang & Shashi Kant Bhatia & Abhishek Walia, 2022. "An Overview on Co-Pyrolysis of Biodegradable and Non-Biodegradable Wastes," Energies, MDPI, vol. 15(11), pages 1-27, June.
    11. Dai, Ying & Sun, Meng & Fang, Hua & Yao, Huicong & Chen, Jianbiao & Tan, Jinzhu & Mu, Lin & Zhu, Yuezhao, 2024. "Co-combustion of binary and ternary blends of industrial sludge, lignite and pine sawdust via thermogravimetric analysis: Thermal behaviors, interaction effects, kinetics evaluation, and artificial ne," Renewable Energy, Elsevier, vol. 220(C).
    12. He, Xinyan & Liu, Zhaoxia & Niu, Wenjuan & Yang, Li & Zhou, Tan & Qin, Di & Niu, Zhiyou & Yuan, Qiaoxia, 2018. "Effects of pyrolysis temperature on the physicochemical properties of gas and biochar obtained from pyrolysis of crop residues," Energy, Elsevier, vol. 143(C), pages 746-756.
    13. Choi, Dongho & Jung, Sungyup & Lee, Sang Soo & Lin, Kun-Yi Andrew & Park, Young-Kwon & Kim, Hana & Tsang, Yiu Fai & Kwon, Eilhann E., 2021. "Leveraging carbon dioxide to control the H2/CO ratio in catalytic pyrolysis of fishing net waste," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    14. Dissanayake, Pavani Dulanja & Choi, Seung Wan & Igalavithana, Avanthi Deshani & Yang, Xiao & Tsang, Daniel C.W. & Wang, Chi-Hwa & Kua, Harn Wei & Lee, Ki Bong & Ok, Yong Sik, 2020. "Sustainable gasification biochar as a high efficiency adsorbent for CO2 capture: A facile method to designer biochar fabrication," Renewable and Sustainable Energy Reviews, Elsevier, vol. 124(C).
    15. Md Sumon Reza & Zhanar Baktybaevna Iskakova & Shammya Afroze & Kairat Kuterbekov & Asset Kabyshev & Kenzhebatyr Zh. Bekmyrza & Marzhan M. Kubenova & Muhammad Saifullah Abu Bakar & Abul K. Azad & Hrido, 2023. "Influence of Catalyst on the Yield and Quality of Bio-Oil for the Catalytic Pyrolysis of Biomass: A Comprehensive Review," Energies, MDPI, vol. 16(14), pages 1-39, July.
    16. Shen, Feng & Xiong, Xinni & Fu, Junyan & Yang, Jirui & Qiu, Mo & Qi, Xinhua & Tsang, Daniel C.W., 2020. "Recent advances in mechanochemical production of chemicals and carbon materials from sustainable biomass resources," Renewable and Sustainable Energy Reviews, Elsevier, vol. 130(C).
    17. Chen, Qindong & Yue, Yuanmao & Zhang, Chao & Dong, Zihang & Wang, Ning & Yuan, Tugui & Xu, Qiyong, 2024. "Iron powder in-situ catalytic pyrolysis on coated wooden board: Kinetic, products, and recovery," Applied Energy, Elsevier, vol. 358(C).
    18. Jung, Sungyup & Jung, Jong-Min & Tsang, Yiu Fai & Bhatnagar, Amit & Chen, Wei-Hsin & Lin, Kun-Yi Andrew & Kwon, Eilhann E., 2022. "Biodiesel production from black soldier fly larvae derived from food waste by non-catalytic transesterification," Energy, Elsevier, vol. 238(PA).
    19. Li, Chang & Wang, Yishuang & Tang, Zhiyuan & Zhou, Zinan & Qin, Baolong & Chen, Mingqiang, 2023. "The bifunctional active sites on carbon supported Fe-Mo bimetallic catalyst to improve Kraft lignin liquefaction," Renewable Energy, Elsevier, vol. 219(P2).
    20. Bernd Gamisch & Lea Huber & Matthias Gaderer & Belal Dawoud, 2022. "On the Kinetic Mechanisms of the Reduction and Oxidation Reactions of Iron Oxide/Iron Pellets for a Hydrogen Storage Process," Energies, MDPI, vol. 15(21), pages 1-29, November.

    More about this item

    Keywords

    Cellulose; Pyrolysis; Catalyst; CO2; Furans;
    All these keywords.

    JEL classification:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:294:y:2024:i:c:s036054422400673x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.