IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v191y2020ics0360544219322510.html
   My bibliography  Save this article

Anaerobic digestion for energy production from agricultural biomass waste in Greece: Capacity assessment for the region of Thessaly

Author

Listed:
  • Moustakas, K.
  • Parmaxidou, P.
  • Vakalis, S.

Abstract

Agricultural biomass is a term that refers to the agricultural residues, which remain in the fields after harvesting along with the tree pruning. The small fraction of biomass in the Greek energy balance has been the driving force behind this research. The region of Thessaly has been chosen as case study area due to its large agricultural activities. The scope has been the research of the possibility to exploit the available biomass waste as feedstock in the existing anaerobic digestion plants. Additional scope is the identification of the available primary agricultural biomass resources. Information is provided for the potential of agricultural biomass, like quality characteristics and social benefits, but also soil additive and biogas produced. Next, the waste management potential of Larissa and Thessaly are examined in order to highlight the potential of energy production. The available anaerobic digestion plants in Thessaly are outlined. The production of primary agricultural biomass on annual basis is estimated to be 707164 tons. The significant streams are identified to be arable crops, industrial plants and tree pruning. The proposed anaerobic digestion process is expected to handle the whole biomass amounts and produce per year max. 619 GWh of electricity and 895 GWh of thermal energy.

Suggested Citation

  • Moustakas, K. & Parmaxidou, P. & Vakalis, S., 2020. "Anaerobic digestion for energy production from agricultural biomass waste in Greece: Capacity assessment for the region of Thessaly," Energy, Elsevier, vol. 191(C).
  • Handle: RePEc:eee:energy:v:191:y:2020:i:c:s0360544219322510
    DOI: 10.1016/j.energy.2019.116556
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544219322510
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2019.116556?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yang, Tianxue & Li, Yingjun & Gao, Jixi & Huang, Caihong & Chen, Bin & Zhang, Lieyu & Wang, Xiaowei & Zhao, Ying & Xi, Beidou & Li, Xiang, 2015. "Performance of dry anaerobic technology in the co-digestion of rural organic solid wastes in China," Energy, Elsevier, vol. 93(P2), pages 2497-2502.
    2. Long, Yuyang & Wang, Hengyi & Yu, Xiaoqin & Shen, Dongsheng & Yin, Jun & Chen, Ting, 2018. "Effect of activated persulfate on gas production from food waste anaerobic digestion," Energy, Elsevier, vol. 165(PB), pages 343-348.
    3. Soltero, V.M. & Chacartegui, R. & Ortiz, C. & Velázquez, R., 2018. "Potential of biomass district heating systems in rural areas," Energy, Elsevier, vol. 156(C), pages 132-143.
    4. Situmorang, Yohanes Andre & Zhao, Zhongkai & Yoshida, Akihiro & Kasai, Yutaka & Abudula, Abuliti & Guan, Guoqing, 2019. "Potential power generation on a small-scale separated-type biomass gasification system," Energy, Elsevier, vol. 179(C), pages 19-29.
    5. Stich, J. & Ramachandran, S. & Hamacher, T. & Stimming, U., 2017. "Techno-economic estimation of the power generation potential from biomass residues in Southeast Asia," Energy, Elsevier, vol. 135(C), pages 930-942.
    6. Khayum, Naseem & Anbarasu, S. & Murugan, S., 2018. "Biogas potential from spent tea waste: A laboratory scale investigation of co-digestion with cow manure," Energy, Elsevier, vol. 165(PB), pages 760-768.
    7. Spyridon Alatzas & Konstantinos Moustakas & Dimitrios Malamis & Stergios Vakalis, 2019. "Biomass Potential from Agricultural Waste for Energetic Utilization in Greece," Energies, MDPI, vol. 12(6), pages 1-20, March.
    8. Christina Moulogianni & Thomas Bournaris, 2017. "Biomass Production from Crops Residues: Ranking of Agro-Energy Regions," Energies, MDPI, vol. 10(7), pages 1-12, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Aravani, Vasiliki P. & Sun, Hangyu & Yang, Ziyi & Liu, Guangqing & Wang, Wen & Anagnostopoulos, George & Syriopoulos, George & Charisiou, Nikolaos D. & Goula, Maria A. & Kornaros, Michael & Papadakis,, 2022. "Agricultural and livestock sector's residues in Greece & China: Comparative qualitative and quantitative characterization for assessing their potential for biogas production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    2. Kumar, Atul & Samadder, S.R., 2020. "Performance evaluation of anaerobic digestion technology for energy recovery from organic fraction of municipal solid waste: A review," Energy, Elsevier, vol. 197(C).
    3. Zhao, Xinyue & Chen, Heng & Zheng, Qiwei & Liu, Jun & Pan, Peiyuan & Xu, Gang & Zhao, Qinxin & Jiang, Xue, 2023. "Thermo-economic analysis of a novel hydrogen production system using medical waste and biogas with zero carbon emission," Energy, Elsevier, vol. 265(C).
    4. Christos Argyropoulos & Theodoros Petrakis & Lito-Aspasia Roditi & Angeliki Kavga, 2023. "Opportunities and Potential for Energy Utilization from Agricultural and Livestock Residues in the Region of Thessaly," Sustainability, MDPI, vol. 15(5), pages 1-14, March.
    5. Tumen Ozdil, N.F. & Caliskan, M., 2022. "Energy potential from biomass from agricultural crops: Development prospects of the Turkish bioeconomy," Energy, Elsevier, vol. 249(C).
    6. Lauma Balode & Kristiāna Dolge & Dagnija Blumberga, 2023. "Sector-Specific Pathways to Sustainability: Unravelling the Most Promising Renewable Energy Options," Sustainability, MDPI, vol. 15(16), pages 1-24, August.
    7. Abbas, Shahbaz & Chiang Hsieh, Lin-Han & Techato, Kuaanan, 2021. "Supply chain integrated decision model in order to synergize the energy system of textile industry from its resource waste," Energy, Elsevier, vol. 229(C).
    8. Luo, Laipeng & Zhang, Zhiyi & Li, Chong & Nishu, & He, Fang & Zhang, Xingguang & Cai, Junmeng, 2021. "Insight into master plots method for kinetic analysis of lignocellulosic biomass pyrolysis," Energy, Elsevier, vol. 233(C).
    9. Georgios Tsimelas & Dimitris Kofinas, 2023. "A Resource Nexus Analysis Methodology for Quantifying Synergies and Trade-Offs in the Agricultural Sector and Revealing Implications of a Legume Production Paradigm Shift," Sustainability, MDPI, vol. 15(12), pages 1-29, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Persson, Urban & Wiechers, Eva & Möller, Bernd & Werner, Sven, 2019. "Heat Roadmap Europe: Heat distribution costs," Energy, Elsevier, vol. 176(C), pages 604-622.
    2. Anna Duczkowska & Ewa Kulińska & Zbigniew Plutecki & Joanna Rut, 2022. "Sustainable Agro-Biomass Market for Urban Heating Using Centralized District Heating System," Energies, MDPI, vol. 15(12), pages 1-23, June.
    3. Marquina, Jesús & Colinet, María José & Pablo-Romero, María del P., 2021. "The economic value of olive sector biomass for thermal and electrical uses in Andalusia (Spain)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
    4. Paris, Bas & Papadakis, George & Janssen, Rainer & Rutz, Dominik, 2021. "Economic analysis of advanced biofuels, renewable gases, electrofuels and recycled carbon fuels for the Greek transport sector until 2050," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    5. Golmohamadi, Hessam & Larsen, Kim Guldstrand & Jensen, Peter Gjøl & Hasrat, Imran Riaz, 2022. "Integration of flexibility potentials of district heating systems into electricity markets: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    6. Zou, Shuzhen & Kang, Di, 2018. "Relationship between anaerobic digestion characteristics and biogas production under composting pretreatment," Renewable Energy, Elsevier, vol. 125(C), pages 485-494.
    7. Thanarat Pratumwan & Warunee Tia & Adisak Nathakaranakule & Somchart Soponronnarit, 2022. "Grid-connected Electricity Generation Potential from Energy Crops: A Case Study of Marginal Land in Thailand," International Journal of Energy Economics and Policy, Econjournals, vol. 12(1), pages 62-72.
    8. Alessandro Guzzini & Marco Pellegrini & Edoardo Pelliconi & Cesare Saccani, 2020. "Low Temperature District Heating: An Expert Opinion Survey," Energies, MDPI, vol. 13(4), pages 1-34, February.
    9. Mengting Jiang & Camilo Rindt & David M. J. Smeulders, 2022. "Optimal Planning of Future District Heating Systems—A Review," Energies, MDPI, vol. 15(19), pages 1-38, September.
    10. Guido Marseglia & Blanca Fernandez Vasquez-Pena & Carlo Maria Medaglia & Ricardo Chacartegui, 2020. "Alternative Fuels for Combined Cycle Power Plants: An Analysis of Options for a Location in India," Sustainability, MDPI, vol. 12(8), pages 1-25, April.
    11. Nobuki Morita & Yo Toma & Hideto Ueno, 2024. "Acceleration of Composting by Addition of Clinker to Tea Leaf Compost," Waste, MDPI, vol. 2(1), pages 1-13, February.
    12. Yanran Fu & Tao Luo & Zili Mei & Jiang Li & Kun Qiu & Yihong Ge, 2018. "Dry Anaerobic Digestion Technologies for Agricultural Straw and Acceptability in China," Sustainability, MDPI, vol. 10(12), pages 1-13, December.
    13. Aravani, Vasiliki P. & Sun, Hangyu & Yang, Ziyi & Liu, Guangqing & Wang, Wen & Anagnostopoulos, George & Syriopoulos, George & Charisiou, Nikolaos D. & Goula, Maria A. & Kornaros, Michael & Papadakis,, 2022. "Agricultural and livestock sector's residues in Greece & China: Comparative qualitative and quantitative characterization for assessing their potential for biogas production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    14. Marco Manzone & Fabrizio Gioelli & Paolo Balsari, 2017. "Kiwi Clear‐Cut: First Evaluation of Recovered Biomass for Energy Production," Energies, MDPI, vol. 10(11), pages 1-12, November.
    15. Juan D. Gil & Jerónimo Ramos-Teodoro & José A. Romero-Ramos & Rodrigo Escobar & José M. Cardemil & Cynthia Giagnocavo & Manuel Pérez, 2021. "Demand-Side Optimal Sizing of a Solar Energy–Biomass Hybrid System for Isolated Greenhouse Environments: Methodology and Application Example," Energies, MDPI, vol. 14(13), pages 1-22, June.
    16. Wang, Dongji & Liu, Liansheng & Yuan, Ye & Yang, Hua & Zhou, Yixing & Duan, Ruanze, 2020. "Design and key heating power parameters of a newly-developed household biomass briquette heating boiler," Renewable Energy, Elsevier, vol. 147(P1), pages 1371-1379.
    17. Siniša Škrbić & Aleksandar Ašonja & Radivoj Prodanović & Vladica Ristić & Goran Stevanović & Miroslav Vulić & Zoran Janković & Adriana Radosavac & Saša Igić, 2020. "Analysis of Plant-Production-Obtained Biomass in Function of Sustainable Energy," Sustainability, MDPI, vol. 12(13), pages 1-14, July.
    18. Mejdi Jeguirim & Lionel Limousy, 2019. "Biomass Chars: Elaboration, Characterization and Applications II," Energies, MDPI, vol. 12(3), pages 1-6, January.
    19. Cano, Antonio & Arévalo, Paul & Jurado, Francisco, 2020. "Energy analysis and techno-economic assessment of a hybrid PV/HKT/BAT system using biomass gasifier: Cuenca-Ecuador case study," Energy, Elsevier, vol. 202(C).
    20. Ardit Sertolli & Zoltán Gabnai & Péter Lengyel & Attila Bai, 2022. "Biomass Potential and Utilization in Worldwide Research Trends—A Bibliometric Analysis," Sustainability, MDPI, vol. 14(9), pages 1-20, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:191:y:2020:i:c:s0360544219322510. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.