IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i12p2852-d1412123.html
   My bibliography  Save this article

An Overview of Pyrolysis as Waste Treatment to Produce Eco-Energy

Author

Listed:
  • Ana B. Cuevas

    (Department of Physical Chemistry and Applied Thermodynamics, Universidad de Córdoba, Campus de Rabanales, Campus de Excelencia Internacional Agroalimentario ceiA3, 14071 Córdoba, Spain)

  • David E. Leiva-Candia

    (Department of Physical Chemistry and Applied Thermodynamics, Universidad de Córdoba, Campus de Rabanales, Campus de Excelencia Internacional Agroalimentario ceiA3, 14071 Córdoba, Spain)

  • M. P. Dorado

    (Department of Physical Chemistry and Applied Thermodynamics, Universidad de Córdoba, Campus de Rabanales, Campus de Excelencia Internacional Agroalimentario ceiA3, 14071 Córdoba, Spain)

Abstract

The aim of this review is to understand the progress in waste material management through pyrolysis to produce eco-energy. The growing demand for energy, combined with the depletion of traditional fossil fuels and their contribution to environmental problems, has led to the search for waste-to-energy technologies in pursuit of carbon neutrality. While municipal residues are only part of the waste management problem, the impact of discarded plastics on the environment and landfills is significant. Plastics not only take centuries to decompose, but also seriously pollute the oceans. Pyrolysis is a thermochemical process that allows for the thermal decomposition of waste in the absence of oxygen. There are several types of pyrolytic reactors, including batch and continuous ones. Batch reactors are preferred to process polymeric waste, with studies highlighting the importance of optimizing parameters, i.e., type of feedstock, heating rate, and pyrolysis temperature. Moreover, the choice of reactor type can influence the yield and structure of the final compounds. Furthermore, various studies have highlighted the gas heating value obtained through waste pyrolysis and how the composition of the liquid fraction is influenced by the type of polyethylene used. Though scientific interest in pyrolysis is remarkable, as publications have increased in recent years, kinetics studies are scarce. Overall, pyrolysis is a promising technique for managing waste materials to produce energy. Ongoing research and development in this area offer significant potential for improving the sustainability of waste management systems.

Suggested Citation

  • Ana B. Cuevas & David E. Leiva-Candia & M. P. Dorado, 2024. "An Overview of Pyrolysis as Waste Treatment to Produce Eco-Energy," Energies, MDPI, vol. 17(12), pages 1-32, June.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:12:p:2852-:d:1412123
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/12/2852/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/12/2852/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Fan, Liangliang & Liu, Lei & Xiao, Zhiguo & Su, Zheyang & Huang, Pei & Peng, Hongyu & Lv, Sen & Jiang, Haiwei & Ruan, Roger & Chen, Paul & Zhou, Wenguang, 2021. "Comparative study of continuous-stirred and batch microwave pyrolysis of linear low-density polyethylene in the presence/absence of HZSM-5," Energy, Elsevier, vol. 228(C).
    2. Slopiecka, Katarzyna & Bartocci, Pietro & Fantozzi, Francesco, 2012. "Thermogravimetric analysis and kinetic study of poplar wood pyrolysis," Applied Energy, Elsevier, vol. 97(C), pages 491-497.
    3. Laurent Lebreton & Anthony Andrady, 2019. "Future scenarios of global plastic waste generation and disposal," Palgrave Communications, Palgrave Macmillan, vol. 5(1), pages 1-11, December.
    4. Ahmed, I. & Gupta, A.K., 2009. "Syngas yield during pyrolysis and steam gasification of paper," Applied Energy, Elsevier, vol. 86(9), pages 1813-1821, September.
    5. Colantoni, A. & Evic, N. & Lord, R. & Retschitzegger, S. & Proto, A.R. & Gallucci, F. & Monarca, D., 2016. "Characterization of biochars produced from pyrolysis of pelletized agricultural residues," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 187-194.
    6. Mark Anthony Camilleri, 2020. "European environment policy for the circular economy: Implications for business and industry stakeholders," Sustainable Development, John Wiley & Sons, Ltd., vol. 28(6), pages 1804-1812, November.
    7. Park, Ki-Bum & Jeong, Yong-Seong & Kim, Joo-Sik, 2019. "Activator-assisted pyrolysis of polypropylene," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    8. Williams, Paul T. & Slaney, Edward, 2007. "Analysis of products from the pyrolysis and liquefaction of single plastics and waste plastic mixtures," Resources, Conservation & Recycling, Elsevier, vol. 51(4), pages 754-769.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Juan-Carlos Cobos-Torres & Luis-Holguer Idrovo-Ortiz & Sandra Lucia Cobos-Mora & Vinicio Santillan, 2025. "Renewable Energies and Biochar: A Green Alternative for Reducing Carbon Footprints Using Tree Species from the Southern Andean Region of Ecuador," Energies, MDPI, vol. 18(5), pages 1-22, February.
    2. Janusz Lasek & Krzysztof Głód & Krzysztof Supernok & Joanna Bigda, 2024. "Emission of Gaseous Pollutants During Combustion and Co-Combustion of Thermally Treated Municipal Solid Waste," Energies, MDPI, vol. 17(23), pages 1-17, November.
    3. Anna Kowalik-Klimczak & Maciej Życki & Monika Łożyńska & Wioletta Barszcz, 2025. "Study on Possible Transformation of Leather and Textile Wastes in Carbonised Materials by Pyrolysis Under Different Gas Conditions," Sustainability, MDPI, vol. 17(4), pages 1-16, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Saadi, W. & Rodríguez-Sánchez, S. & Ruiz, B. & Souissi-Najar, S. & Ouederni, A. & Fuente, E., 2019. "Pyrolysis technologies for pomegranate (Punica granatum L.) peel wastes. Prospects in the bioenergy sector," Renewable Energy, Elsevier, vol. 136(C), pages 373-382.
    2. Huang, Y.F. & Chiueh, P.T. & Kuan, W.H. & Lo, S.L., 2013. "Pyrolysis kinetics of biomass from product information," Applied Energy, Elsevier, vol. 110(C), pages 1-8.
    3. Rafael Martínez-Peláez & Alberto Ochoa-Brust & Solange Rivera & Vanessa G. Félix & Rodolfo Ostos & Héctor Brito & Ramón A. Félix & Luis J. Mena, 2023. "Role of Digital Transformation for Achieving Sustainability: Mediated Role of Stakeholders, Key Capabilities, and Technology," Sustainability, MDPI, vol. 15(14), pages 1-27, July.
    4. Jie Gu & Cheng Tung Chong & Guo Ren Mong & Jo-Han Ng & William Woei Fong Chong, 2023. "Determination of Pyrolysis and Kinetics Characteristics of Chicken Manure Using Thermogravimetric Analysis Coupled with Particle Swarm Optimization," Energies, MDPI, vol. 16(4), pages 1-22, February.
    5. Huang, Yu-Fong & Shih, Chun-Hao & Chiueh, Pei-Te & Lo, Shang-Lien, 2015. "Microwave co-pyrolysis of sewage sludge and rice straw," Energy, Elsevier, vol. 87(C), pages 638-644.
    6. World Bank, 2024. "Unlocking Financing to Combat the Plastics Crisis - Opportunities, Risks, and Recommendations for Plastic Credits," World Bank Publications - Reports 41866, The World Bank Group.
    7. Burra, K.G. & Hussein, M.S. & Amano, R.S. & Gupta, A.K., 2016. "Syngas evolutionary behavior during chicken manure pyrolysis and air gasification," Applied Energy, Elsevier, vol. 181(C), pages 408-415.
    8. Philip Krummeck & Yagmur Damla Dokur & Daniel Braun & Steffen Kiemel & Robert Miehe, 2022. "Designing Component Interfaces for the Circular Economy—A Case Study for Product-As-A-Service Business Models in the Automotive Industry," Sustainability, MDPI, vol. 14(21), pages 1-17, October.
    9. Huijie Yan & Mateo Cordier & Takuro Uehara, 2024. "Future Projections of Global Plastic Pollution: Scenario Analyses and Policy Implications," Sustainability, MDPI, vol. 16(2), pages 1-18, January.
    10. Joanicjusz Nazarko & Ewa Chodakowska & Łukasz Nazarko, 2022. "Evaluating the Transition of the European Union Member States towards a Circular Economy," Energies, MDPI, vol. 15(11), pages 1-24, May.
    11. M. N. Uddin & Kuaanan Techato & Juntakan Taweekun & Md Mofijur Rahman & M. G. Rasul & T. M. I. Mahlia & S. M. Ashrafur, 2018. "An Overview of Recent Developments in Biomass Pyrolysis Technologies," Energies, MDPI, vol. 11(11), pages 1-24, November.
    12. Pongsapak Chindasombatcharoen & Pattanaporn Chatjuthamard & Pornsit Jiraporn & Sirimon Treepongkaruna, 2022. "Achieving sustainable development goals through board size and innovation," Sustainable Development, John Wiley & Sons, Ltd., vol. 30(4), pages 664-677, August.
    13. Luo, Laipeng & Zhang, Zhiyi & Li, Chong & Nishu, & He, Fang & Zhang, Xingguang & Cai, Junmeng, 2021. "Insight into master plots method for kinetic analysis of lignocellulosic biomass pyrolysis," Energy, Elsevier, vol. 233(C).
    14. Evangelos Danopoulos & Maureen Twiddy & Jeanette M Rotchell, 2020. "Microplastic contamination of drinking water: A systematic review," PLOS ONE, Public Library of Science, vol. 15(7), pages 1-23, July.
    15. Almendros, A.I. & Blázquez, G. & Ronda, A. & Martín-Lara, M.A. & Calero, M., 2017. "Study of the catalytic effect of nickel in the thermal decomposition of olive tree pruning via thermogravimetric analysis," Renewable Energy, Elsevier, vol. 103(C), pages 825-835.
    16. Zouhair Elkhlifi & Jerosha Iftikhar & Mohammad Sarraf & Baber Ali & Muhammad Hamzah Saleem & Irshad Ibranshahib & Mozart Daltro Bispo & Lucas Meili & Sezai Ercisli & Ehlinaz Torun Kayabasi & Naser Ale, 2023. "Potential Role of Biochar on Capturing Soil Nutrients, Carbon Sequestration and Managing Environmental Challenges: A Review," Sustainability, MDPI, vol. 15(3), pages 1-18, January.
    17. Fan Li & Dong Liu & Ke Sun & Songheng Yang & Fangzheng Peng & Kexin Zhang & Guodong Guo & Yuan Si, 2024. "Towards a Future Hydrogen Supply Chain: A Review of Technologies and Challenges," Sustainability, MDPI, vol. 16(5), pages 1-36, February.
    18. Zhang, Zhiping & Tahir, Nadeem & Li, Yameng & Zhang, Tian & Zhu, Shengnan & Zhang, Quanguo, 2019. "Tailoring of structural and optical parameters of corncobs through ball milling pretreatment," Renewable Energy, Elsevier, vol. 141(C), pages 298-304.
    19. Nakayama, Tadanobu & Osako, Masahiro, 2023. "Development of a process-based eco-hydrology model for evaluating the spatio-temporal dynamics of macro- and micro-plastics for the whole of Japan," Ecological Modelling, Elsevier, vol. 476(C).
    20. Khumbelo Mabadahanye & Mwazvita T. B. Dalu & Linton F. Munyai & Farai Dondofema & Tatenda Dalu, 2025. "Perceptions and Knowledge of Water and Wastewater Treatment Plant Workers Regarding Plastic Pollution and Removal," Sustainability, MDPI, vol. 17(1), pages 1-13, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:12:p:2852-:d:1412123. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.