IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v233y2021ics0360544221013591.html
   My bibliography  Save this article

Simultaneous multi-objective optimization of a PHEV power management system and component sizing in real world traffic condition

Author

Listed:
  • Mahmoodi-k, Mehdi
  • Montazeri, Morteza
  • Madanipour, Vahid

Abstract

Due to emission concerns as well as fuel shortages and expenses, plug-in hybrid electric vehicles (PHEVs) have become public and successful in the market. The performance of such vehicles can be mainly associated with energy management, powertrain system component sizes, and costs which are considered as the most effective factors improving fuel economy and reducing emissions. Since there is an interaction between the performances of these sub-systems, simultaneous optimization of control strategy and component sizing were developed in the presence of multi-objective optimization such as fuel consumption, emissions, as well as operating costs based on a genetic algorithm. For this purpose, a multi input fuzzy logic controller (MFLC) was designed at the first step for energy management system with regard to energy efficiency and batteries performance. Then, a novel simultaneous multi-objective constrained optimization approach was implemented to enhance optimally various coupling design parameters (optimization variables), conflicting design objectives (fuel economy, costs, and emissions), as well as non-linear constraints (vehicle dynamic and batteries performance). Accordingly, the simulation results showed that the proposed instantaneous optimization method was sufficient for improving fuel economy despite increases in the optimization variables and time taking multiple objectives and constraints into account. Besides, the results demonstrated that the designed multi-objective simultaneous optimization algorithm could respectively improve overall energy efficiency and emission reduction of the PHEV up to 7% and 10% for real-world driving cycle and also decreases the operational costs up to 12% approving its applicability. In the optimization process the batteries performance and vehicle dynamic were observed as the constraints to enhance the batteries safety and driver required performance. Finally, the sensitivity and the robustness of the proposed algorithm were verified through the variation of vehicle parameters as well as road and traffic conditions.

Suggested Citation

  • Mahmoodi-k, Mehdi & Montazeri, Morteza & Madanipour, Vahid, 2021. "Simultaneous multi-objective optimization of a PHEV power management system and component sizing in real world traffic condition," Energy, Elsevier, vol. 233(C).
  • Handle: RePEc:eee:energy:v:233:y:2021:i:c:s0360544221013591
    DOI: 10.1016/j.energy.2021.121111
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544221013591
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2021.121111?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hu, Xiaosong & Murgovski, Nikolce & Johannesson, Lars & Egardt, Bo, 2013. "Energy efficiency analysis of a series plug-in hybrid electric bus with different energy management strategies and battery sizes," Applied Energy, Elsevier, vol. 111(C), pages 1001-1009.
    2. Xue, Nansi & Du, Wenbo & Greszler, Thomas A. & Shyy, Wei & Martins, Joaquim R.R.A., 2014. "Design of a lithium-ion battery pack for PHEV using a hybrid optimization method," Applied Energy, Elsevier, vol. 115(C), pages 591-602.
    3. Shang, Duo (Rick) & Sun, Guodong, 2016. "Electricity-price arbitrage with plug-in hybrid electric vehicle: Gain or loss?," Energy Policy, Elsevier, vol. 95(C), pages 402-410.
    4. Tie, Siang Fui & Tan, Chee Wei, 2013. "A review of energy sources and energy management system in electric vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 20(C), pages 82-102.
    5. Xu, Liangfei & Ouyang, Minggao & Li, Jianqiu & Yang, Fuyuan & Lu, Languang & Hua, Jianfeng, 2013. "Optimal sizing of plug-in fuel cell electric vehicles using models of vehicle performance and system cost," Applied Energy, Elsevier, vol. 103(C), pages 477-487.
    6. Chen, Zeyu & Xiong, Rui & Cao, Jiayi, 2016. "Particle swarm optimization-based optimal power management of plug-in hybrid electric vehicles considering uncertain driving conditions," Energy, Elsevier, vol. 96(C), pages 197-208.
    7. Pengxiang Song & Yulong Lei & Yao Fu, 2020. "Multi-Objective Optimization and Matching of Power Source for PHEV Based on Genetic Algorithm," Energies, MDPI, vol. 13(5), pages 1-20, March.
    8. Palmer, Kate & Tate, James E. & Wadud, Zia & Nellthorp, John, 2018. "Total cost of ownership and market share for hybrid and electric vehicles in the UK, US and Japan," Applied Energy, Elsevier, vol. 209(C), pages 108-119.
    9. Redelbach, Martin & Özdemir, Enver Doruk & Friedrich, Horst E., 2014. "Optimizing battery sizes of plug-in hybrid and extended range electric vehicles for different user types," Energy Policy, Elsevier, vol. 73(C), pages 158-168.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Yachao & Wen, Yi & Zhu, Qinggong & Luo, Jiaxin & Yang, Zhengjun & Su, Sheng & Wang, Xin & Hao, Lijun & Tan, Jianwei & Yin, Hang & Ge, Yunshan, 2022. "Real driving energy consumption and CO2 & pollutant emission characteristics of a parallel plug-in hybrid electric vehicle under different propulsion modes," Energy, Elsevier, vol. 244(PB).
    2. Gao, Kai & Luo, Pan & Xie, Jin & Chen, Bin & Wu, Yue & Du, Ronghua, 2023. "Energy management of plug-in hybrid electric vehicles based on speed prediction fused driving intention and LIDAR," Energy, Elsevier, vol. 284(C).
    3. Ju, Fei & Du, Wei & Zhuang, Weichao & Li, Bingbing & Wang, Tao & Wang, Weiwei & Ma, Huijie, 2024. "Profit-effective component sizing for electric delivery trucks with dual motor coupling powertrain," Energy, Elsevier, vol. 296(C).
    4. Nie, Zhigen & Jia, Yuan & Wang, Wanqiong & Chen, Zheng & Outbib, Rachid, 2022. "Co-optimization of speed planning and energy management for intelligent fuel cell hybrid vehicle considering complex traffic conditions," Energy, Elsevier, vol. 247(C).
    5. Zhou, Wei & Cai, Xuan & Chen, Yaoqi & Li, Junqiu & Peng, Xiaoyan, 2022. "Decoding the optimal charge depletion behavior in energy domain for predictive energy management of series plug-in hybrid electric vehicle," Applied Energy, Elsevier, vol. 316(C).
    6. Liu, Yonggang & Huang, Bin & Yang, Yang & Lei, Zhenzhen & Zhang, Yuanjian & Chen, Zheng, 2022. "Hierarchical speed planning and energy management for autonomous plug-in hybrid electric vehicle in vehicle-following environment," Energy, Elsevier, vol. 260(C).
    7. Perez-Dávila, Oriana & Álvarez Fernández, Roberto, 2023. "Optimization algorithm applied to extended range fuel cell hybrid vehicles. Contribution to road transport decarbonization," Energy, Elsevier, vol. 267(C).
    8. Miranda, Matheus H.R. & Silva, Fabrício L. & Lourenço, Maria A.M. & Eckert, Jony J. & Silva, Ludmila C.A., 2022. "Vehicle drivetrain and fuzzy controller optimization using a planar dynamics simulation based on a real-world driving cycle," Energy, Elsevier, vol. 257(C).
    9. Tobias Frambach & Ralf Kleisch & Ralf Liedtke & Jochen Schwarzer & Egbert Figgemeier, 2022. "Environmental Impact Assessment and Classification of 48 V Plug-in Hybrids with Real-Driving Use Case Simulations," Energies, MDPI, vol. 15(7), pages 1-21, March.
    10. Vamsi Krishna Reddy, Aala Kalananda & Venkata Lakshmi Narayana, Komanapalli, 2022. "Meta-heuristics optimization in electric vehicles -an extensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).
    11. Kim, Dong-Min & Lee, Soo-Gyung & Kim, Dae-Kee & Park, Min-Ro & Lim, Myung-Seop, 2022. "Sizing and optimization process of hybrid electric propulsion system for heavy-duty vehicle based on Gaussian process modeling considering traction motor characteristics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    12. Al-Wreikat, Yazan & Serrano, Clara & Sodré, José Ricardo, 2022. "Effects of ambient temperature and trip characteristics on the energy consumption of an electric vehicle," Energy, Elsevier, vol. 238(PC).
    13. Haibo Wu & Xingwang Tang & Sichuan Xu & Jiangbin Zhou, 2022. "Research on Energy Saving of PHEV Air Conditioning System Based on Reducing Air Backflow in Underhood," Energies, MDPI, vol. 15(9), pages 1-15, April.
    14. Miranda, Matheus H.R. & Silva, Fabrício L. & Lourenço, Maria A.M. & Eckert, Jony J. & Silva, Ludmila C.A., 2022. "Electric vehicle powertrain and fuzzy controller optimization using a planar dynamics simulation based on a real-world driving cycle," Energy, Elsevier, vol. 238(PC).
    15. Huang, Xiaohui & Huang, Qi & Cao, Huajun & Yan, Wanbin & Cao, Le & Zhang, Qiongzhi, 2023. "Optimal design for improving operation performance of electric construction machinery collaborative system: Method and application," Energy, Elsevier, vol. 263(PA).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Du, Jiuyu & Chen, Jingfu & Song, Ziyou & Gao, Mingming & Ouyang, Minggao, 2017. "Design method of a power management strategy for variable battery capacities range-extended electric vehicles to improve energy efficiency and cost-effectiveness," Energy, Elsevier, vol. 121(C), pages 32-42.
    2. Nie, Qingyun & Zhang, Lihui & Tong, Zihao & Dai, Guyu & Chai, Jianxue, 2022. "Cost compensation method for PEVs participating in dynamic economic dispatch based on carbon trading mechanism," Energy, Elsevier, vol. 239(PA).
    3. Haibo Wu & Xingwang Tang & Sichuan Xu & Jiangbin Zhou, 2022. "Research on Energy Saving of PHEV Air Conditioning System Based on Reducing Air Backflow in Underhood," Energies, MDPI, vol. 15(9), pages 1-15, April.
    4. Schwab, Julia & Sölch, Christian & Zöttl, Gregor, 2022. "Electric Vehicle Cost in 2035: The impact of market penetration and charging strategies," Energy Economics, Elsevier, vol. 114(C).
    5. Pei, Huanxin & Hu, Xiaosong & Yang, Yalian & Tang, Xiaolin & Hou, Cong & Cao, Dongpu, 2018. "Configuration optimization for improving fuel efficiency of power split hybrid powertrains with a single planetary gear," Applied Energy, Elsevier, vol. 214(C), pages 103-116.
    6. Julian Estaller & Anton Kersten & Manuel Kuder & Torbjörn Thiringer & Richard Eckerle & Thomas Weyh, 2022. "Overview of Battery Impedance Modeling Including Detailed State-of-the-Art Cylindrical 18650 Lithium-Ion Battery Cell Comparisons," Energies, MDPI, vol. 15(10), pages 1-21, May.
    7. Wieczorek, Maciej & Lewandowski, Mirosław, 2017. "A mathematical representation of an energy management strategy for hybrid energy storage system in electric vehicle and real time optimization using a genetic algorithm," Applied Energy, Elsevier, vol. 192(C), pages 222-233.
    8. Feroldi, Diego & Carignano, Mauro, 2016. "Sizing for fuel cell/supercapacitor hybrid vehicles based on stochastic driving cycles," Applied Energy, Elsevier, vol. 183(C), pages 645-658.
    9. Xiao, B. & Ruan, J. & Yang, W. & Walker, P.D. & Zhang, N., 2021. "A review of pivotal energy management strategies for extended range electric vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    10. Ke, Bwo-Ren & Chung, Chen-Yuan & Chen, Yen-Chang, 2016. "Minimizing the costs of constructing an all plug-in electric bus transportation system: A case study in Penghu," Applied Energy, Elsevier, vol. 177(C), pages 649-660.
    11. Oh, Ki-Yong & Epureanu, Bogdan I., 2016. "Characterization and modeling of the thermal mechanics of lithium-ion battery cells," Applied Energy, Elsevier, vol. 178(C), pages 633-646.
    12. Hou, Cong & Ouyang, Minggao & Xu, Liangfei & Wang, Hewu, 2014. "Approximate Pontryagin’s minimum principle applied to the energy management of plug-in hybrid electric vehicles," Applied Energy, Elsevier, vol. 115(C), pages 174-189.
    13. Xiaoli Sun & Zhengguo Li & Xiaolin Wang & Chengjiang Li, 2019. "Technology Development of Electric Vehicles: A Review," Energies, MDPI, vol. 13(1), pages 1-29, December.
    14. Yuping Zeng & Yang Cai & Guiyue Kou & Wei Gao & Datong Qin, 2018. "Energy Management for Plug-In Hybrid Electric Vehicle Based on Adaptive Simplified-ECMS," Sustainability, MDPI, vol. 10(6), pages 1-24, June.
    15. Zheng Chen & Ningyuan Guo & Xiaoyu Li & Jiangwei Shen & Renxin Xiao & Siqi Li, 2017. "Battery Pack Grouping and Capacity Improvement for Electric Vehicles Based on a Genetic Algorithm," Energies, MDPI, vol. 10(4), pages 1-15, March.
    16. Babu, Ajay & Ashok, S., 2015. "Improved parallel mild hybrids for urban roads," Applied Energy, Elsevier, vol. 144(C), pages 276-283.
    17. Liu, Hui & Li, Xunming & Wang, Weida & Han, Lijin & Xiang, Changle, 2018. "Markov velocity predictor and radial basis function neural network-based real-time energy management strategy for plug-in hybrid electric vehicles," Energy, Elsevier, vol. 152(C), pages 427-444.
    18. Chang, Long & Ma, Chen & Zhang, Chenghui & Duan, Bin & Cui, Naxin & Li, Changlong, 2023. "Correlations of lithium-ion battery parameter variations and connected configurations on pack statistics," Applied Energy, Elsevier, vol. 329(C).
    19. Zhou, Wenbin & Cleaver, Christopher J. & Dunant, Cyrille F. & Allwood, Julian M. & Lin, Jianguo, 2023. "Cost, range anxiety and future electricity supply: A review of how today's technology trends may influence the future uptake of BEVs," Renewable and Sustainable Energy Reviews, Elsevier, vol. 173(C).
    20. José Luis Sampietro & Vicenç Puig & Ramon Costa-Castelló, 2019. "Optimal Sizing of Storage Elements for a Vehicle Based on Fuel Cells, Supercapacitors, and Batteries," Energies, MDPI, vol. 12(5), pages 1-27, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:233:y:2021:i:c:s0360544221013591. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.