IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v263y2023ipas0360544222025154.html
   My bibliography  Save this article

Optimal design for improving operation performance of electric construction machinery collaborative system: Method and application

Author

Listed:
  • Huang, Xiaohui
  • Huang, Qi
  • Cao, Huajun
  • Yan, Wanbin
  • Cao, Le
  • Zhang, Qiongzhi

Abstract

Electrification of construction machinery is an important measure to reduce carbon emissions from the transportation industry, and collaborative work is an essential feature of construction machinery. Current research on vehicle mechanical component optimization lacks consideration of the collaborative system's overall performance and a unified standard for optimizing component selection. So, it is uncertain to optimize single-machine components to improve system performance. This paper proposes an optimization design method for collaborative system. Firstly, based on the meta-action theory and analytic hierarchy process, the meta-action unit of the optimal design is determined. Then, a dual-layer hierarchical optimization framework is used to optimize the meta-action unit. This method selects the gearbox of typical collaborative system as the optimization design objective. And the multi-objective marine predator algorithm is used to solve it. The results show that the motor efficiency of wheel loader and dump truck increased to 87.13% and 85.64% respectively. The energy consumption of a single operating cycle was reduced by 1.55% and 5.69% respectively, battery cycle life increased by 1.32% and 4.69%. Furthermore, the daily operation cost of the collaborative system is reduced by 2.61%. The proposed optimization design method can be broadly applied in the optimization design of collaborative systems.

Suggested Citation

  • Huang, Xiaohui & Huang, Qi & Cao, Huajun & Yan, Wanbin & Cao, Le & Zhang, Qiongzhi, 2023. "Optimal design for improving operation performance of electric construction machinery collaborative system: Method and application," Energy, Elsevier, vol. 263(PA).
  • Handle: RePEc:eee:energy:v:263:y:2023:i:pa:s0360544222025154
    DOI: 10.1016/j.energy.2022.125629
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544222025154
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2022.125629?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Krause, Jette & Thiel, Christian & Tsokolis, Dimitrios & Samaras, Zissis & Rota, Christian & Ward, Andy & Prenninger, Peter & Coosemans, Thierry & Neugebauer, Stephan & Verhoeve, Wim, 2020. "EU road vehicle energy consumption and CO2 emissions by 2050 – Expert-based scenarios," Energy Policy, Elsevier, vol. 138(C).
    2. Kwon, Kihan & Jo, Junhyeong & Min, Seungjae, 2021. "Multi-objective gear ratio and shifting pattern optimization of multi-speed transmissions for electric vehicles considering variable transmission efficiency," Energy, Elsevier, vol. 236(C).
    3. Li, Zhenhe & Khajepour, Amir & Song, Jinchun, 2019. "A comprehensive review of the key technologies for pure electric vehicles," Energy, Elsevier, vol. 182(C), pages 824-839.
    4. Senqi Tan & Jue Yang & Xinxin Zhao & Tingting Hai & Wenming Zhang, 2018. "Gear Ratio Optimization of a Multi-Speed Transmission for Electric Dump Truck Operating on the Structure Route," Energies, MDPI, vol. 11(6), pages 1-17, May.
    5. Smriti Mallapaty, 2020. "How China could be carbon neutral by mid-century," Nature, Nature, vol. 586(7830), pages 482-483, October.
    6. Lin, Boqiang & Li, Zheng, 2022. "Towards world's low carbon development: The role of clean energy," Applied Energy, Elsevier, vol. 307(C).
    7. Miranda, Matheus H.R. & Silva, Fabrício L. & Lourenço, Maria A.M. & Eckert, Jony J. & Silva, Ludmila C.A., 2022. "Vehicle drivetrain and fuzzy controller optimization using a planar dynamics simulation based on a real-world driving cycle," Energy, Elsevier, vol. 257(C).
    8. LaRoche-Boisvert, Mélanie & Dimitrakopoulos, Roussos & Ferland, Jacques A., 2021. "Simultaneous production scheduling and transportation optimization from mines to port under uncertain material supply," Resources Policy, Elsevier, vol. 73(C).
    9. Lin, Tianliang & Lin, Yuanzheng & Ren, Haoling & Chen, Haibin & Chen, Qihuai & Li, Zhongshen, 2020. "Development and key technologies of pure electric construction machinery," Renewable and Sustainable Energy Reviews, Elsevier, vol. 132(C).
    10. Zachary P. Cano & Dustin Banham & Siyu Ye & Andreas Hintennach & Jun Lu & Michael Fowler & Zhongwei Chen, 2018. "Batteries and fuel cells for emerging electric vehicle markets," Nature Energy, Nature, vol. 3(4), pages 279-289, April.
    11. Miranda, Matheus H.R. & Silva, Fabrício L. & Lourenço, Maria A.M. & Eckert, Jony J. & Silva, Ludmila C.A., 2022. "Electric vehicle powertrain and fuzzy controller optimization using a planar dynamics simulation based on a real-world driving cycle," Energy, Elsevier, vol. 238(PC).
    12. Huang, Yanjun & Wang, Hong & Khajepour, Amir & Li, Bin & Ji, Jie & Zhao, Kegang & Hu, Chuan, 2018. "A review of power management strategies and component sizing methods for hybrid vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 96(C), pages 132-144.
    13. Saaty, Thomas L., 1990. "How to make a decision: The analytic hierarchy process," European Journal of Operational Research, Elsevier, vol. 48(1), pages 9-26, September.
    14. Mahmoodi-k, Mehdi & Montazeri, Morteza & Madanipour, Vahid, 2021. "Simultaneous multi-objective optimization of a PHEV power management system and component sizing in real world traffic condition," Energy, Elsevier, vol. 233(C).
    15. Choi, Yosoon & Nguyen, Hoang & Bui, Xuan-Nam & Nguyen-Thoi, Trung, 2022. "Optimization of haulage-truck system performance for ore production in open-pit mines using big data and machine learning-based methods," Resources Policy, Elsevier, vol. 75(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Huang, Xiaohui & Huang, Qi & Cao, Huajun & Wang, Qianyue & Yan, Wanbin & Cao, Le, 2023. "Battery capacity selection for electric construction machinery considering variable operating conditions and multiple interest claims," Energy, Elsevier, vol. 275(C).
    2. Do, Tri Cuong & Dinh, Truong Quang & Yu, Yingxiao & Ahn, Kyoung Kwan, 2023. "Innovative powertrain and advanced energy management strategy for hybrid hydraulic excavators," Energy, Elsevier, vol. 282(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Eckert, Jony Javorski & Silva, Fabrício L. & da Silva, Samuel Filgueira & Bueno, André Valente & de Oliveira, Mona Lisa Moura & Silva, Ludmila C.A., 2022. "Optimal design and power management control of hybrid biofuel–electric powertrain," Applied Energy, Elsevier, vol. 325(C).
    2. Miranda, Matheus H.R. & Silva, Fabrício L. & Lourenço, Maria A.M. & Eckert, Jony J. & Silva, Ludmila C.A., 2022. "Vehicle drivetrain and fuzzy controller optimization using a planar dynamics simulation based on a real-world driving cycle," Energy, Elsevier, vol. 257(C).
    3. Md Ragib Ahssan & Mehran Ektesabi & Saman Gorji, 2023. "Evaluation of a Three-Parameter Gearshift Strategy for a Two-Speed Transmission System in Electric Vehicles," Energies, MDPI, vol. 16(5), pages 1-28, March.
    4. He, Hongwen & Han, Mo & Liu, Wei & Cao, Jianfei & Shi, Man & Zhou, Nana, 2022. "MPC-based longitudinal control strategy considering energy consumption for a dual-motor electric vehicle," Energy, Elsevier, vol. 253(C).
    5. Shi, Wenzhuo & Huangfu, Yigeng & Xu, Liangcai & Pang, Shengzhao, 2022. "Online energy management strategy considering fuel cell fault for multi-stack fuel cell hybrid vehicle based on multi-agent reinforcement learning," Applied Energy, Elsevier, vol. 328(C).
    6. Macias, A. & Kandidayeni, M. & Boulon, L. & Trovão, J.P., 2021. "Fuel cell-supercapacitor topologies benchmark for a three-wheel electric vehicle powertrain," Energy, Elsevier, vol. 224(C).
    7. Kandidayeni, M. & Macias, A. & Boulon, L. & Kelouwani, S., 2020. "Investigating the impact of ageing and thermal management of a fuel cell system on energy management strategies," Applied Energy, Elsevier, vol. 274(C).
    8. Mokesioluwa Fanoro & Mladen Božanić & Saurabh Sinha, 2022. "A Review of the Impact of Battery Degradation on Energy Management Systems with a Special Emphasis on Electric Vehicles," Energies, MDPI, vol. 15(16), pages 1-29, August.
    9. Huang, Zhenhua & Fan, Hongqin, 2022. "Responsibility-sharing subsidy policy for reducing diesel emissions from in-use off-road construction equipment," Applied Energy, Elsevier, vol. 320(C).
    10. Lin, Xinyou & Li, Yalong & Zhang, Guangji, 2022. "Bi-objective optimization strategy of energy consumption and shift shock based driving cycle-aware bias coefficients for a novel dual-motor electric vehicle," Energy, Elsevier, vol. 249(C).
    11. Balali, Yasaman & Stegen, Sascha, 2021. "Review of energy storage systems for vehicles based on technology, environmental impacts, and costs," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    12. Peng Wu & Penghui Qiang & Tao Pan & Huaiquan Zang, 2022. "Multi-Objective Optimization of Gear Ratios of a Seamless Three-Speed Automated Manual Transmission for Electric Vehicles Considering Shift Performance," Energies, MDPI, vol. 15(11), pages 1-27, June.
    13. Miranda, Matheus H.R. & Silva, Fabrício L. & Lourenço, Maria A.M. & Eckert, Jony J. & Silva, Ludmila C.A., 2023. "Particle swarm optimization of Elman neural network applied to battery state of charge and state of health estimation," Energy, Elsevier, vol. 285(C).
    14. Kwon, Kihan & Lee, Jung-Hwan & Lim, Sang-Kil, 2023. "Optimization of multi-speed transmission for electric vehicles based on electrical and mechanical efficiency analysis," Applied Energy, Elsevier, vol. 342(C).
    15. Lázaro V. Cremades & Lluc Canals Casals, 2022. "Analysis of the Future of Mobility: The Battery Electric Vehicle Seems Just a Transitory Alternative," Energies, MDPI, vol. 15(23), pages 1-12, December.
    16. Tobias Frambach & Ralf Kleisch & Ralf Liedtke & Jochen Schwarzer & Egbert Figgemeier, 2022. "Environmental Impact Assessment and Classification of 48 V Plug-in Hybrids with Real-Driving Use Case Simulations," Energies, MDPI, vol. 15(7), pages 1-21, March.
    17. Fang, Yan Ru & Peng, Wei & Urpelainen, Johannes & Hossain, M.S. & Qin, Yue & Ma, Teng & Ren, Ming & Liu, Xiaorui & Zhang, Silu & Huang, Chen & Dai, Hancheng, 2023. "Neutralizing China's transportation sector requires combined decarbonization efforts from power and hydrogen supply," Applied Energy, Elsevier, vol. 349(C).
    18. Flavio Martins & Maria Fatima Almeida & Rodrigo Calili & Agatha Oliveira, 2020. "Design Thinking Applied to Smart Home Projects: A User-Centric and Sustainable Perspective," Sustainability, MDPI, vol. 12(23), pages 1-27, December.
    19. Xie, Yunkun & Li, Yangyang & Zhao, Zhichao & Dong, Hao & Wang, Shuqian & Liu, Jingping & Guan, Jinhuan & Duan, Xiongbo, 2020. "Microsimulation of electric vehicle energy consumption and driving range," Applied Energy, Elsevier, vol. 267(C).
    20. Ning Xiang & Limao Wang & Shuai Zhong & Chen Zheng & Bo Wang & Qiushi Qu, 2021. "How Does the World View China’s Carbon Policy? A Sentiment Analysis on Twitter Data," Energies, MDPI, vol. 14(22), pages 1-17, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:263:y:2023:i:pa:s0360544222025154. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.