IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v222y2021ics0360544221002577.html
   My bibliography  Save this article

Energy, exergy, economic and exergoenvironmental analyses of polygeneration system integrated gas cycle, absorption chiller, and Copper-Chlorine thermochemical cycle to produce power, cooling, and hydrogen

Author

Listed:
  • Fan, Guangli
  • Ahmadi, A.
  • Ehyaei, M.A.
  • Das, Biplab

Abstract

The proposed cogeneration system consists of a gas cycle, an absorption chiller, a heat recovery steam generator (HRSG), and Copper-Chlorine (Cu-Cl) thermochemical cycle that is applied for power, cooling, and hydrogen production. The configuration of these cycles is somehow that the exhaust hot gas from the gas cycle operates a heat recovery steam generator (HRSG), which is considered to produce steam for the Cu-Cl cycle. Then, the rest of the heat of hot gas energy is recovered by an absorption chiller for producing a cooling capacity. In this cycle, minimum exhaust heat from the gas turbine delivers to the atmosphere and causes less thermal population and clean power generation. Moreover, providing cooling capacity and hydrogen production associated with this cogeneration is applicable to store hydrogen as a clean fuel. A comprehensive performance assessment of this cogeneration system has been carried out based on energy, exergy, economic, and exergoenvironmental analyses. The results revealed while energy and exergy efficiencies for the gas cycle alone are 19% and 15%, respectively, and with using this proposed plant, these values can be improved up to about 43% and 44%, respectively. Economic analysis of this system shows the simple payback period (SPP) value for the stand-alone gas cycle is about 7.2 years, whereas this index for the combined gas and Cu-Cl cycles is about 3.1 years and for the whole system is 2.4 years. The results of exergoenvironment analysis reveal that the highest exergy stability factor (exergy destruction) of 0.8 belongs to the Cu-Cl cycle and the lowest exergy stability value of about 0.03 belongs to the absorption chiller cycle.

Suggested Citation

  • Fan, Guangli & Ahmadi, A. & Ehyaei, M.A. & Das, Biplab, 2021. "Energy, exergy, economic and exergoenvironmental analyses of polygeneration system integrated gas cycle, absorption chiller, and Copper-Chlorine thermochemical cycle to produce power, cooling, and hyd," Energy, Elsevier, vol. 222(C).
  • Handle: RePEc:eee:energy:v:222:y:2021:i:c:s0360544221002577
    DOI: 10.1016/j.energy.2021.120008
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544221002577
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2021.120008?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lazzaretto, Andrea & Tsatsaronis, George, 2006. "SPECO: A systematic and general methodology for calculating efficiencies and costs in thermal systems," Energy, Elsevier, vol. 31(8), pages 1257-1289.
    2. Edalati, Saeed & Ameri, Mehran & Iranmanesh, Masoud & Tarmahi, Hakimeh & Gholampour, Maysam, 2016. "Technical and economic assessments of grid-connected photovoltaic power plants: Iran case study," Energy, Elsevier, vol. 114(C), pages 923-934.
    3. Habibollahzade, Ali & Gholamian, Ehsan & Behzadi, Amirmohammad, 2019. "Multi-objective optimization and comparative performance analysis of hybrid biomass-based solid oxide fuel cell/solid oxide electrolyzer cell/gas turbine using different gasification agents," Applied Energy, Elsevier, vol. 233, pages 985-1002.
    4. Jia, Junxi & Abudula, Abuliti & Wei, Liming & Sun, Baozhi & Shi, Yue, 2015. "Thermodynamic modeling of an integrated biomass gasification and solid oxide fuel cell system," Renewable Energy, Elsevier, vol. 81(C), pages 400-410.
    5. Tolga Balta, M. & Dincer, Ibrahim & Hepbasli, Arif, 2010. "Energy and exergy analyses of a new four-step copper–chlorine cycle for geothermal-based hydrogen production," Energy, Elsevier, vol. 35(8), pages 3263-3272.
    6. Zare, A. Darabadi & Saray, R. Khoshbakhti & Mirmasoumi, S. & Bahlouli, K., 2019. "Optimization strategies for mixing ratio of biogas and natural gas co-firing in a cogeneration of heat and power cycle," Energy, Elsevier, vol. 181(C), pages 635-644.
    7. Wang, Gang & Yao, Yubo & Chen, Zeshao & Hu, Peng, 2019. "Thermodynamic and optical analyses of a hybrid solar CPV/T system with high solar concentrating uniformity based on spectral beam splitting technology," Energy, Elsevier, vol. 166(C), pages 256-266.
    8. Ghazikhani, M. & Khazaee, I. & Abdekhodaie, E., 2014. "Exergy analysis of gas turbine with air bottoming cycle," Energy, Elsevier, vol. 72(C), pages 599-607.
    9. Razi, Faran & Dincer, Ibrahim & Gabriel, Kamiel, 2020. "Energy and exergy analyses of a new integrated thermochemical copper-chlorine cycle for hydrogen production," Energy, Elsevier, vol. 205(C).
    10. Soltani, Saeed, 2019. "Modified exergy and exergoeconomic analyses of a biomass post fired hydrogen production combined cycle," Renewable Energy, Elsevier, vol. 135(C), pages 1466-1480.
    11. Abusoglu, Aysegul & Kanoglu, Mehmet, 2009. "Exergoeconomic analysis and optimization of combined heat and power production: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(9), pages 2295-2308, December.
    12. Shamoushaki, Moein & Ehyaei, M.A. & Ghanatir, Farrokh, 2017. "Exergy, economic and environmental analysis and multi-objective optimization of a SOFC-GT power plant," Energy, Elsevier, vol. 134(C), pages 515-531.
    13. Prebeg, Pero & Gasparovic, Goran & Krajacic, Goran & Duic, Neven, 2016. "Long-term energy planning of Croatian power system using multi-objective optimization with focus on renewable energy and integration of electric vehicles," Applied Energy, Elsevier, vol. 184(C), pages 1493-1507.
    14. Nami, Hossein & Ertesvåg, Ivar S. & Agromayor, Roberto & Riboldi, Luca & Nord, Lars O., 2018. "Gas turbine exhaust gas heat recovery by organic Rankine cycles (ORC) for offshore combined heat and power applications - Energy and exergy analysis," Energy, Elsevier, vol. 165(PB), pages 1060-1071.
    15. Ehyaei, M.A. & Mozafari, A. & Alibiglou, M.H., 2011. "Exergy, economic & environmental (3E) analysis of inlet fogging for gas turbine power plant," Energy, Elsevier, vol. 36(12), pages 6851-6861.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mohsen Fallah Vostakola & Babak Salamatinia & Bahman Amini Horri, 2022. "A Review on Recent Progress in the Integrated Green Hydrogen Production Processes," Energies, MDPI, vol. 15(3), pages 1-41, February.
    2. Zhang, Hongsheng & Hao, Ruijun & Liu, Xingang & Zhang, Ning & Guo, Wenli & Zhang, Zhenghui & Liu, Chengjun & Liu, Yifeng & Duan, Chenghong & Qin, Jiyun, 2022. "Thermodynamic performance analysis of an improved coal-fired power generation system coupled with geothermal energy based on organic Rankine cycle," Renewable Energy, Elsevier, vol. 201(P1), pages 273-290.
    3. Gilani, Hooman Azad & Hoseinzadeh, Siamak & Karimi, Hirou & Karimi, Ako & Hassanzadeh, Amir & Garcia, Davide Astiaso, 2021. "Performance analysis of integrated solar heat pump VRF system for the low energy building in Mediterranean island," Renewable Energy, Elsevier, vol. 174(C), pages 1006-1019.
    4. Azizi, Saeid & Shakibi, Hamid & Shokri, Afshar & Chitsaz, Ata & Yari, Mortaza, 2023. "Multi-aspect analysis and RSM-based optimization of a novel dual-source electricity and cooling cogeneration system," Applied Energy, Elsevier, vol. 332(C).
    5. M. Ehyaei & M. Kasaeian & Stéphane Abanades & Armin Razmjoo & Hamed Afshari & Marc Rosen & Biplab Das, 2023. "Natural gas‐fueled multigeneration for reducing environmental effects of brine and increasing product diversity: Thermodynamic and economic analyses," Post-Print hal-04113893, HAL.
    6. Zhou, Jincheng & Hai, Tao & Ali, Masood Ashraf & Shamseldin, Mohamed A. & Almojil, Sattam Fahad & Almohana, Abdulaziz Ibrahim & Alali, Abdulrhman Fahmi, 2023. "Waste heat recovery of a wind turbine for poly-generation purpose: Feasibility analysis, environmental impact assessment, and parametric optimization," Energy, Elsevier, vol. 263(PD).
    7. Azarpour, Abbas & Mohamadi-Baghmolaei, Mohamad & Hajizadeh, Abdollah & Zendehboudi, Sohrab, 2022. "Systematic energy and exergy assessment of a hydropurification process: Theoretical and practical insights," Energy, Elsevier, vol. 239(PC).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. M. Ehyaei & M. Kasaeian & Stéphane Abanades & Armin Razmjoo & Hamed Afshari & Marc Rosen & Biplab Das, 2023. "Natural gas‐fueled multigeneration for reducing environmental effects of brine and increasing product diversity: Thermodynamic and economic analyses," Post-Print hal-04113893, HAL.
    2. Kanoglu, Mehmet & Ayanoglu, Abdulkadir & Abusoglu, Aysegul, 2011. "Exergoeconomic assessment of a geothermal assisted high temperature steam electrolysis system," Energy, Elsevier, vol. 36(7), pages 4422-4433.
    3. Lara, Yolanda & Petrakopoulou, Fontina & Morosuk, Tatiana & Boyano, Alicia & Tsatsaronis, George, 2017. "An exergy-based study on the relationship between costs and environmental impacts in power plants," Energy, Elsevier, vol. 138(C), pages 920-928.
    4. Tri Tjahjono & Mehdi Ali Ehyaei & Abolfazl Ahmadi & Siamak Hoseinzadeh & Saim Memon, 2021. "Thermo-Economic Analysis on Integrated CO 2 , Organic Rankine Cycles, and NaClO Plant Using Liquefied Natural Gas," Energies, MDPI, vol. 14(10), pages 1-24, May.
    5. Wu, Zhen & Zhu, Pengfei & Yao, Jing & Zhang, Shengan & Ren, Jianwei & Yang, Fusheng & Zhang, Zaoxiao, 2020. "Combined biomass gasification, SOFC, IC engine, and waste heat recovery system for power and heat generation: Energy, exergy, exergoeconomic, environmental (4E) evaluations," Applied Energy, Elsevier, vol. 279(C).
    6. Oyekale, Joseph & Petrollese, Mario & Cau, Giorgio, 2020. "Modified auxiliary exergy costing in advanced exergoeconomic analysis applied to a hybrid solar-biomass organic Rankine cycle plant," Applied Energy, Elsevier, vol. 268(C).
    7. Moein Shamoushaki & Mehdi Aliehyaei & Farhad Taghizadeh-Hesary, 2021. "Energy, Exergy, Exergoeconomic, and Exergoenvironmental Assessment of Flash-Binary Geothermal Combined Cooling, Heating and Power Cycle," Energies, MDPI, vol. 14(15), pages 1-24, July.
    8. Mohammadkhani, F. & Shokati, N. & Mahmoudi, S.M.S. & Yari, M. & Rosen, M.A., 2014. "Exergoeconomic assessment and parametric study of a Gas Turbine-Modular Helium Reactor combined with two Organic Rankine Cycles," Energy, Elsevier, vol. 65(C), pages 533-543.
    9. Asgari, Nima & Khoshbakhti Saray, Rahim & Mirmasoumi, Siamak, 2023. "Seasonal exergoeconomic assessment and optimization of a dual-fuel trigeneration system of power, cooling, heating, and domestic hot water, proposed for Tabriz, Iran," Renewable Energy, Elsevier, vol. 206(C), pages 192-213.
    10. Esmaeil Jadidi & Mohammad Hasan Khoshgoftar Manesh & Mostafa Delpisheh & Viviani Caroline Onishi, 2021. "Advanced Exergy, Exergoeconomic, and Exergoenvironmental Analyses of Integrated Solar-Assisted Gasification Cycle for Producing Power and Steam from Heavy Refinery Fuels," Energies, MDPI, vol. 14(24), pages 1-29, December.
    11. Gürtürk, Mert & Oztop, Hakan F. & Hepbasli, Arif, 2015. "Comparison of exergoeconomic analysis of two different perlite expansion furnaces," Energy, Elsevier, vol. 80(C), pages 589-598.
    12. Fallahi, Alireza & Farzad, Somayeh & Mohtasebi, Seyed Saeid & Mandegari, Mohsen & Görgens, Johann F. & Gupta, Vijai Kumar & Lam, Su Shiung & Tabatabaei, Meisam & Aghbashlo, Mortaza, 2021. "Sustainability assessment of sugarcane residues valorization to biobutadiene by exergy and exergoeconomic evaluation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 147(C).
    13. Mohammad Hossein Ahmadi & Seyed Ali Banihashem & Mahyar Ghazvini & Milad Sadeghzadeh, 2018. "Thermo-economic and exergy assessment and optimization of performance of a hydrogen production system by using geothermal energy," Energy & Environment, , vol. 29(8), pages 1373-1392, December.
    14. Wei, Zhiqiang & Zhang, Bingjian & Wu, Shengyuan & Chen, Qinglin & Tsatsaronis, George, 2012. "Energy-use analysis and evaluation of distillation systems through avoidable exergy destruction and investment costs," Energy, Elsevier, vol. 42(1), pages 424-433.
    15. Adriano da S. Marques & Monica Carvalho & Álvaro A. V. Ochoa & Ronelly J. Souza & Carlos A. C. dos Santos, 2020. "Exergoeconomic Assessment of a Compact Electricity-Cooling Cogeneration Unit," Energies, MDPI, vol. 13(20), pages 1-18, October.
    16. Habibollahzade, Ali & Rosen, Marc A., 2021. "Syngas-fueled solid oxide fuel cell functionality improvement through appropriate feedstock selection and multi-criteria optimization using Air/O2-enriched-air gasification agents," Applied Energy, Elsevier, vol. 286(C).
    17. Wang, Jiangjiang & Mao, Tianzhi & Wu, Jing, 2017. "Modified exergoeconomic modeling and analysis of combined cooling heating and power system integrated with biomass-steam gasification," Energy, Elsevier, vol. 139(C), pages 871-882.
    18. Banerjee, Avishek & Tierney, Michael. J. & Thorpe, Roger. N., 2012. "Thermoeconomics, cost benefit analysis, and a novel way of dealing with revenue generating dissipative units applied to candidate decentralised energy systems for Indian rural villages," Energy, Elsevier, vol. 43(1), pages 477-488.
    19. Wang, Jiangjiang & Li, Meng & Ren, Fukang & Li, Xiaojing & Liu, Boxiang, 2018. "Modified exergoeconomic analysis method based on energy level with reliability consideration: Cost allocations in a biomass trigeneration system," Renewable Energy, Elsevier, vol. 123(C), pages 104-116.
    20. Abusoglu, Aysegul & Demir, Sinan & Kanoglu, Mehmet, 2012. "Thermoeconomic assessment of a sustainable municipal wastewater treatment system," Renewable Energy, Elsevier, vol. 48(C), pages 424-435.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:222:y:2021:i:c:s0360544221002577. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.