IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v181y2019icp635-644.html
   My bibliography  Save this article

Optimization strategies for mixing ratio of biogas and natural gas co-firing in a cogeneration of heat and power cycle

Author

Listed:
  • Zare, A. Darabadi
  • Saray, R. Khoshbakhti
  • Mirmasoumi, S.
  • Bahlouli, K.

Abstract

The most suitable design parameters of the cogeneration system, from the exergetic and the exergo-economic viewpoints, were determined using the genetic algorithm based on optimization method. In this study, a cogeneration cycle, consisting of a gas turbine cycle with power generation capacity of 30 MW, an anaerobic digester, a steam generator, and a heat exchanger for heating the digester and pretreatment system, has been used. The air compressor pressure ratio, the isentropic efficiencies of gas turbine and air compressor, biogas and natural gas mixing ratio, air preheater outlet temperature, turbine inlet temperature, and evaporator pinch point temperature difference were selected as the decision variables. Multi-objective optimization based on genetic algorithm using MATLAB software is carried out to discover the optimum point with regard to the total cost rate and exergy efficiency as the objective functions. The optimization was conducted according two scenarios. While the fuel mixing ratio was considered as a decision variable in the first scenario, in the second one this mixing ratio was kept constant, 50%. Optimization of the cycle according to the first scenario raised the exergy efficiency from 46.59% to 53.25% and decreased the system total cost rate from 4385$/h to 2935$/h. As well, compared to the base case, the optimal case of the second scenario had more exergy efficiency and less total cost rate, 48.35% versus 50.5% and 4028$/h versus 3665$/h, respectively.

Suggested Citation

  • Zare, A. Darabadi & Saray, R. Khoshbakhti & Mirmasoumi, S. & Bahlouli, K., 2019. "Optimization strategies for mixing ratio of biogas and natural gas co-firing in a cogeneration of heat and power cycle," Energy, Elsevier, vol. 181(C), pages 635-644.
  • Handle: RePEc:eee:energy:v:181:y:2019:i:c:p:635-644
    DOI: 10.1016/j.energy.2019.05.182
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544219310643
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2019.05.182?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wang, Jiang-Jiang & Jing, You-Yin & Zhang, Chun-Fa, 2010. "Optimization of capacity and operation for CCHP system by genetic algorithm," Applied Energy, Elsevier, vol. 87(4), pages 1325-1335, April.
    2. Lee, Jong Jun & Kim, Young Sik & Cha, Kyu Sang & Kim, Tong Seop & Sohn, Jeong L. & Joo, Yong Jin, 2009. "Influence of system integration options on the performance of an integrated gasification combined cycle power plant," Applied Energy, Elsevier, vol. 86(9), pages 1788-1796, September.
    3. Bruno, Joan Carles & Ortega-López, Víctor & Coronas, Alberto, 2009. "Integration of absorption cooling systems into micro gas turbine trigeneration systems using biogas: Case study of a sewage treatment plant," Applied Energy, Elsevier, vol. 86(6), pages 837-847, June.
    4. Taner, Tolga & Sivrioglu, Mecit, 2015. "Energy–exergy analysis and optimisation of a model sugar factory in Turkey," Energy, Elsevier, vol. 93(P1), pages 641-654.
    5. Shokati, Naser & Ranjbar, Faramarz & Yari, Mortaza, 2015. "Exergoeconomic analysis and optimization of basic, dual-pressure and dual-fluid ORCs and Kalina geothermal power plants: A comparative study," Renewable Energy, Elsevier, vol. 83(C), pages 527-542.
    6. Mirmasoumi, Siamak & Ebrahimi, Sirous & Saray, Rahim Khoshbakhti, 2018. "Enhancement of biogas production from sewage sludge in a wastewater treatment plant: Evaluation of pretreatment techniques and co-digestion under mesophilic and thermophilic conditions," Energy, Elsevier, vol. 157(C), pages 707-717.
    7. Bahlouli, K. & Khoshbakhti Saray, R. & Sarabchi, N., 2015. "Parametric investigation and thermo-economic multi-objective optimization of an ammonia–water power/cooling cycle coupled with an HCCI (homogeneous charge compression ignition) engine," Energy, Elsevier, vol. 86(C), pages 672-684.
    8. Abusoglu, Aysegul & Demir, Sinan & Kanoglu, Mehmet, 2012. "Thermoeconomic assessment of a sustainable municipal wastewater treatment system," Renewable Energy, Elsevier, vol. 48(C), pages 424-435.
    9. Mohammadkhani, F. & Shokati, N. & Mahmoudi, S.M.S. & Yari, M. & Rosen, M.A., 2014. "Exergoeconomic assessment and parametric study of a Gas Turbine-Modular Helium Reactor combined with two Organic Rankine Cycles," Energy, Elsevier, vol. 65(C), pages 533-543.
    10. Anvari, Simin & Khoshbakhti Saray, Rahim & Bahlouli, Keyvan, 2015. "Conventional and advanced exergetic and exergoeconomic analyses applied to a tri-generation cycle for heat, cold and power production," Energy, Elsevier, vol. 91(C), pages 925-939.
    11. Rios, Mario & Kaltschmitt, Martin, 2016. "Electricity generation potential from biogas produced from organic waste in Mexico," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 384-395.
    12. Jarungthammachote, S. & Dutta, A., 2007. "Thermodynamic equilibrium model and second law analysis of a downdraft waste gasifier," Energy, Elsevier, vol. 32(9), pages 1660-1669.
    13. Sayyaadi, Hoseyn, 2009. "Multi-objective approach in thermoenvironomic optimization of a benchmark cogeneration system," Applied Energy, Elsevier, vol. 86(6), pages 867-879, June.
    14. Khaljani, M. & Khoshbakhti Saray, R. & Bahlouli, K., 2015. "Thermodynamic and thermoeconomic optimization of an integrated gas turbine and organic Rankine cycle," Energy, Elsevier, vol. 93(P2), pages 2136-2145.
    15. Kazemi-Beydokhti, Amin & Zeinali Heris, Saeed, 2012. "Thermal optimization of combined heat and power (CHP) systems using nanofluids," Energy, Elsevier, vol. 44(1), pages 241-247.
    16. Naser Shokati & Farzad Mohammadkhani & Mortaza Yari & Seyed M. S. Mahmoudi & Marc A. Rosen, 2014. "A Comparative Exergoeconomic Analysis of Waste Heat Recovery from a Gas Turbine-Modular Helium Reactor via Organic Rankine Cycles," Sustainability, MDPI, vol. 6(5), pages 1-16, April.
    17. Ahmadi, Pouria & Dincer, Ibrahim & Rosen, Marc A., 2011. "Exergy, exergoeconomic and environmental analyses and evolutionary algorithm based multi-objective optimization of combined cycle power plants," Energy, Elsevier, vol. 36(10), pages 5886-5898.
    18. Ogunjuyigbe, A.S.O. & Ayodele, T.R. & Alao, M.A., 2017. "Electricity generation from municipal solid waste in some selected cities of Nigeria: An assessment of feasibility, potential and technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 149-162.
    19. Khaljani, M. & Saray, R. Khoshbakhti & Bahlouli, K., 2016. "Evaluation of a combined cycle based on an HCCI (Homogenous Charge Compression Ignition) engine heat recovery employing two organic Rankine cycles," Energy, Elsevier, vol. 107(C), pages 748-760.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. García, R. & Gil, M.V. & Rubiera, F. & Chen, D. & Pevida, C., 2021. "Renewable hydrogen production from biogas by sorption enhanced steam reforming (SESR): A parametric study," Energy, Elsevier, vol. 218(C).
    2. Masala, Fabiana & Groppi, Daniele & Nastasi, Benedetto & Piras, Giuseppe & Astiaso Garcia, Davide, 2022. "Techno-economic analysis of biogas production and use scenarios in a small island energy system," Energy, Elsevier, vol. 258(C).
    3. Zhang, Minglong & Chen, Hong & Zoghi, Mohammad & Habibi, Hamed, 2022. "Comparison between biogas and pure methane as the fuel of a polygeneration system including a regenerative gas turbine cycle and partial cooling supercritical CO2 Brayton cycle: 4E analysis and tri-ob," Energy, Elsevier, vol. 257(C).
    4. Fan, Guangli & Ahmadi, A. & Ehyaei, M.A. & Das, Biplab, 2021. "Energy, exergy, economic and exergoenvironmental analyses of polygeneration system integrated gas cycle, absorption chiller, and Copper-Chlorine thermochemical cycle to produce power, cooling, and hyd," Energy, Elsevier, vol. 222(C).
    5. Asgari, Nima & Khoshbakhti Saray, Rahim & Mirmasoumi, Siamak, 2023. "Seasonal exergoeconomic assessment and optimization of a dual-fuel trigeneration system of power, cooling, heating, and domestic hot water, proposed for Tabriz, Iran," Renewable Energy, Elsevier, vol. 206(C), pages 192-213.
    6. Mingguang Zhang & Shuai Yu & Hongyi Li, 2023. "Inter-Zone Optimal Scheduling of Rural Wind–Biomass-Hydrogen Integrated Energy System," Energies, MDPI, vol. 16(17), pages 1-15, August.
    7. Teng, Sin Yong & Leong, Wei Dong & How, Bing Shen & Lam, Hon Loong & Máša, Vítězslav & Stehlík, Petr, 2021. "Debottlenecking cogeneration systems under process variations: Multi-dimensional bottleneck tree analysis with neural network ensemble," Energy, Elsevier, vol. 215(PB).
    8. Aghabalazadeh, Mohammad & Neshat, Elaheh, 2024. "Proposal and optimization of a novel biomass-based tri-generation system using energy, exergy and exergoeconomic analyses and design of experiments method," Energy, Elsevier, vol. 288(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Khaljani, M. & Khoshbakhti Saray, R. & Bahlouli, K., 2015. "Thermodynamic and thermoeconomic optimization of an integrated gas turbine and organic Rankine cycle," Energy, Elsevier, vol. 93(P2), pages 2136-2145.
    2. Khaljani, M. & Saray, R. Khoshbakhti & Bahlouli, K., 2016. "Evaluation of a combined cycle based on an HCCI (Homogenous Charge Compression Ignition) engine heat recovery employing two organic Rankine cycles," Energy, Elsevier, vol. 107(C), pages 748-760.
    3. Feng, Yong-qiang & Zhang, Fei-yang & Xu, Jing-wei & He, Zhi-xia & Zhang, Qiang & Xu, Kang-jing, 2023. "Parametric analysis and multi-objective optimization of biomass-fired organic Rankine cycle system combined heat and power under three operation strategies," Renewable Energy, Elsevier, vol. 208(C), pages 431-449.
    4. Shokati, Naser & Ranjbar, Faramarz & Yari, Mortaza, 2015. "Exergoeconomic analysis and optimization of basic, dual-pressure and dual-fluid ORCs and Kalina geothermal power plants: A comparative study," Renewable Energy, Elsevier, vol. 83(C), pages 527-542.
    5. Guillermo Valencia Ochoa & Jhan Piero Rojas & Jorge Duarte Forero, 2020. "Advance Exergo-Economic Analysis of a Waste Heat Recovery System Using ORC for a Bottoming Natural Gas Engine," Energies, MDPI, vol. 13(1), pages 1-18, January.
    6. Bakhshmand, Sina Kazemi & Saray, Rahim Khoshbakhti & Bahlouli, Keyvan & Eftekhari, Hajar & Ebrahimi, Afshin, 2015. "Exergoeconomic analysis and optimization of a triple-pressure combined cycle plant using evolutionary algorithm," Energy, Elsevier, vol. 93(P1), pages 555-567.
    7. Afzali, Sayyed Faridoddin & Mahalec, Vladimir, 2017. "Optimal design, operation and analytical criteria for determining optimal operating modes of a CCHP with fired HRSG, boiler, electric chiller and absorption chiller," Energy, Elsevier, vol. 139(C), pages 1052-1065.
    8. Nondy, J. & Gogoi, T.K., 2021. "Performance comparison of multi-objective evolutionary algorithms for exergetic and exergoenvironomic optimization of a benchmark combined heat and power system," Energy, Elsevier, vol. 233(C).
    9. Aghaei, Ali Tavakkol & Saray, Rahim Khoshbakhti, 2021. "Optimization of a combined cooling, heating, and power (CCHP) system with a gas turbine prime mover: A case study in the dairy industry," Energy, Elsevier, vol. 229(C).
    10. Bahlouli, K. & Khoshbakhti Saray, R. & Sarabchi, N., 2015. "Parametric investigation and thermo-economic multi-objective optimization of an ammonia–water power/cooling cycle coupled with an HCCI (homogeneous charge compression ignition) engine," Energy, Elsevier, vol. 86(C), pages 672-684.
    11. Wang, Zhiwen & Xiong, Wei & Ting, David S.-K. & Carriveau, Rupp & Wang, Zuwen, 2016. "Conventional and advanced exergy analyses of an underwater compressed air energy storage system," Applied Energy, Elsevier, vol. 180(C), pages 810-822.
    12. Gimelli, Alfredo & Muccillo, Massimiliano, 2013. "Optimization criteria for cogeneration systems: Multi-objective approach and application in an hospital facility," Applied Energy, Elsevier, vol. 104(C), pages 910-923.
    13. Esra Özdemir Küçük & Muhsin Kılıç, 2023. "Exergoeconomic and Exergetic Sustainability Analysis of a Combined Dual-Pressure Organic Rankine Cycle and Vapor Compression Refrigeration Cycle," Sustainability, MDPI, vol. 15(8), pages 1-28, April.
    14. Wang, Jiangjiang & Zhai, Zhiqiang (John) & Jing, Youyin & Zhang, Chunfa, 2010. "Particle swarm optimization for redundant building cooling heating and power system," Applied Energy, Elsevier, vol. 87(12), pages 3668-3679, December.
    15. Cudjoe, Dan & Nketiah, Emmanuel & Obuobi, Bright & Adu-Gyamfi, Gibbson & Adjei, Mavis & Zhu, Bangzhu, 2021. "Forecasting the potential and economic feasibility of power generation using biogas from food waste in Ghana: Evidence from Accra and Kumasi," Energy, Elsevier, vol. 226(C).
    16. Cao, Tao & Hwang, Yunho & Radermacher, Reinhard, 2017. "Development of an optimization based design framework for microgrid energy systems," Energy, Elsevier, vol. 140(P1), pages 340-351.
    17. Ramin Ghiami Sardroud & Amirreza Javaherian & Seyed Mohammad Seyed Mahmoudi & Mehri Akbari Kordlar & Marc A. Rosen, 2023. "Proposal and Comprehensive Analysis of a Novel Combined Plant with Gas Turbine and Organic Flash Cycles: An Application of Multi-Objective Optimization," Sustainability, MDPI, vol. 15(19), pages 1-40, September.
    18. Behzadi, Amirmohammad & Gholamian, Ehsan & Houshfar, Ehsan & Habibollahzade, Ali, 2018. "Multi-objective optimization and exergoeconomic analysis of waste heat recovery from Tehran's waste-to-energy plant integrated with an ORC unit," Energy, Elsevier, vol. 160(C), pages 1055-1068.
    19. Kang, Do Won & Kim, Tong Seop & Hur, Kwang Beom & Park, Jung Keuk, 2012. "The effect of firing biogas on the performance and operating characteristics of simple and recuperative cycle gas turbine combined heat and power systems," Applied Energy, Elsevier, vol. 93(C), pages 215-228.
    20. Saffari, Hamid & Sadeghi, Sadegh & Khoshzat, Mohsen & Mehregan, Pooyan, 2016. "Thermodynamic analysis and optimization of a geothermal Kalina cycle system using Artificial Bee Colony algorithm," Renewable Energy, Elsevier, vol. 89(C), pages 154-167.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:181:y:2019:i:c:p:635-644. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.