IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v134y2017icp515-531.html
   My bibliography  Save this article

Exergy, economic and environmental analysis and multi-objective optimization of a SOFC-GT power plant

Author

Listed:
  • Shamoushaki, Moein
  • Ehyaei, M.A.
  • Ghanatir, Farrokh

Abstract

Thermodynamic, exergy, economic and environmental analysis of a solid oxide fuel cell and gas turbine hybrid cycle have been done in this paper. Also, multi-objective optimization of this cycle has been done by NSGA-II algorithm. In order to defining of the optimum design point, interactive fuzzy multi-objective method has been used. At optimum point, the cost function value, 0.0435 (US$/s) and exergy efficiency approximately 57.7% have been obtained. As well, sensitivity analysis of fuel cost per energy unit into objective functions has been done. In addition, rising inlet temperature of gas turbine from 900 up to 1600 (K), has caused an increase in output power up to 8.5% and entropy generation about 30% and a reduction in exergy efficiency from 61.9% to 51.7%. By evaluation of entropy generation rate, it has been concluded that most of enthalpy generation rate (32%) is related to combustion chamber. Increasing of fuel cell stack temperature causes an increase in exergy efficiency from 56.6% up to 60.2% and about 34.8% in output power of the cycle and a reduction in exergy efficiency from 62.8% to 59.1% and 8.4% in fuel cell power. Also, payback time of this cycle is about 3.12 years.

Suggested Citation

  • Shamoushaki, Moein & Ehyaei, M.A. & Ghanatir, Farrokh, 2017. "Exergy, economic and environmental analysis and multi-objective optimization of a SOFC-GT power plant," Energy, Elsevier, vol. 134(C), pages 515-531.
  • Handle: RePEc:eee:energy:v:134:y:2017:i:c:p:515-531
    DOI: 10.1016/j.energy.2017.06.058
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544217310526
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2017.06.058?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Khani, Leyla & Mahmoudi, S. Mohammad S. & Chitsaz, Ata & Rosen, Marc A., 2016. "Energy and exergoeconomic evaluation of a new power/cooling cogeneration system based on a solid oxide fuel cell," Energy, Elsevier, vol. 94(C), pages 64-77.
    2. Valero, Antonio & Lozano, Miguel A. & Serra, Luis & Tsatsaronis, George & Pisa, Javier & Frangopoulos, Christos & von Spakovsky, Michael R., 1994. "CGAM problem: Definition and conventional solution," Energy, Elsevier, vol. 19(3), pages 279-286.
    3. Calise, F. & Dentice d’Accadia, M. & Palombo, A. & Vanoli, L., 2006. "Simulation and exergy analysis of a hybrid Solid Oxide Fuel Cell (SOFC)–Gas Turbine System," Energy, Elsevier, vol. 31(15), pages 3278-3299.
    4. Sadeghi, Mohsen & Chitsaz, Ata & Mahmoudi, S.M.S. & Rosen, Marc A., 2015. "Thermoeconomic optimization using an evolutionary algorithm of a trigeneration system driven by a solid oxide fuel cell," Energy, Elsevier, vol. 89(C), pages 191-204.
    5. Sanaye, Sepehr & Fardad, Abbasali & Mostakhdemi, Masoud, 2011. "Thermoeconomic optimization of an ice thermal storage system for gas turbine inlet cooling," Energy, Elsevier, vol. 36(2), pages 1057-1067.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ji, Zhixing & Qin, Jiang & Cheng, Kunlin & Liu, He & Zhang, Silong & Dong, Peng, 2019. "Performance evaluation of a turbojet engine integrated with interstage turbine burner and solid oxide fuel cell," Energy, Elsevier, vol. 168(C), pages 702-711.
    2. Roy, Dibyendu & Samanta, Samiran & Ghosh, Sudip, 2020. "Performance assessment of a biomass fuelled advanced hybrid power generation system," Renewable Energy, Elsevier, vol. 162(C), pages 639-661.
    3. Moein Shamoushaki & Pouriya H. Niknam & Lorenzo Talluri & Giampaolo Manfrida & Daniele Fiaschi, 2021. "Development of Cost Correlations for the Economic Assessment of Power Plant Equipment," Energies, MDPI, vol. 14(9), pages 1-19, May.
    4. Chen, Jinwei & Chen, Yao & Zhang, Huisheng & Weng, Shilie, 2018. "Effect of different operating strategies for a SOFC-GT hybrid system equipped with anode and cathode ejectors," Energy, Elsevier, vol. 163(C), pages 1-14.
    5. M. Ehyaei & M. Kasaeian & Stéphane Abanades & Armin Razmjoo & Hamed Afshari & Marc Rosen & Biplab Das, 2023. "Natural gas‐fueled multigeneration for reducing environmental effects of brine and increasing product diversity: Thermodynamic and economic analyses," Post-Print hal-04113893, HAL.
    6. Moein Shamoushaki & Giampaolo Manfrida & Lorenzo Talluri & Pouriya H. Niknam & Daniele Fiaschi, 2021. "Different Geothermal Power Cycle Configurations Cost Estimation Models," Sustainability, MDPI, vol. 13(20), pages 1-19, October.
    7. Moein Shamoushaki & Mehdi Aliehyaei & Farhad Taghizadeh-Hesary, 2021. "Energy, Exergy, Exergoeconomic, and Exergoenvironmental Assessment of Flash-Binary Geothermal Combined Cooling, Heating and Power Cycle," Energies, MDPI, vol. 14(15), pages 1-24, July.
    8. Hosseinpour, Javad & Chitsaz, Ata & Eisavi, Beneta & Yari, Mortaza, 2018. "Investigation on performance of an integrated SOFC-Goswami system using wood gasification," Energy, Elsevier, vol. 148(C), pages 614-628.
    9. Fan, Guangli & Ahmadi, A. & Ehyaei, M.A. & Das, Biplab, 2021. "Energy, exergy, economic and exergoenvironmental analyses of polygeneration system integrated gas cycle, absorption chiller, and Copper-Chlorine thermochemical cycle to produce power, cooling, and hyd," Energy, Elsevier, vol. 222(C).
    10. Zheng, Jiangbo, 2024. "Integrated renewable-based multi-generation system with environmental and economic optimization," Energy, Elsevier, vol. 294(C).
    11. Habibollahzade, Ali & Gholamian, Ehsan & Behzadi, Amirmohammad, 2019. "Multi-objective optimization and comparative performance analysis of hybrid biomass-based solid oxide fuel cell/solid oxide electrolyzer cell/gas turbine using different gasification agents," Applied Energy, Elsevier, vol. 233, pages 985-1002.
    12. Chandrakant Nikam, Keval & Jathar, Laxmikant & Shelare, Sagar Dnyaneshwar & Shahapurkar, Kiran & Dambhare, Sunil & Soudagar, Manzoore Elahi M. & Mubarak, Nabisab Mujawar & Ahamad, Tansir & Kalam, M.A., 2023. "Parametric analysis and optimization of 660 MW supercritical power plant," Energy, Elsevier, vol. 280(C).
    13. Naserbegi, A. & Aghaie, M. & Minuchehr, A. & Alahyarizadeh, Gh, 2018. "A novel exergy optimization of Bushehr nuclear power plant by gravitational search algorithm (GSA)," Energy, Elsevier, vol. 148(C), pages 373-385.
    14. Shamoushaki, Moein & Fiaschi, Daniele & Manfrida, Giampaolo & Talluri, Lorenzo, 2022. "Energy, exergy, economic and environmental (4E) analyses of a geothermal power plant with NCGs reinjection," Energy, Elsevier, vol. 244(PA).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chitgar, Nazanin & Moghimi, Mahdi, 2020. "Design and evaluation of a novel multi-generation system based on SOFC-GT for electricity, fresh water and hydrogen production," Energy, Elsevier, vol. 197(C).
    2. Agudelo, Andrés & Valero, Antonio & Torres, César, 2012. "Allocation of waste cost in thermoeconomic analysis," Energy, Elsevier, vol. 45(1), pages 634-643.
    3. Ding, Xiaoyi & Sun, Wei & Harrison, Gareth P. & Lv, Xiaojing & Weng, Yiwu, 2020. "Multi-objective optimization for an integrated renewable, power-to-gas and solid oxide fuel cell/gas turbine hybrid system in microgrid," Energy, Elsevier, vol. 213(C).
    4. Xiong, Jie & Zhao, Haibo & Zhang, Chao & Zheng, Chuguang & Luh, Peter B., 2012. "Thermoeconomic operation optimization of a coal-fired power plant," Energy, Elsevier, vol. 42(1), pages 486-496.
    5. Chitsaz, Ata & Sadeghi, Mohsen & Sadeghi, Maesoumeh & Ghanbarloo, Elham, 2018. "Exergoenvironmental comparison of internal reforming against external reforming in a cogeneration system based on solid oxide fuel cell using an evolutionary algorithm," Energy, Elsevier, vol. 144(C), pages 420-431.
    6. Shi, X.J. & Zhang, P., 2016. "Conjugated heat and mass transfer during flow melting of a phase change material slurry in pipes," Energy, Elsevier, vol. 99(C), pages 58-68.
    7. Sahu, Mithilesh Kumar & Sanjay,, 2017. "Comparative exergoeconomics of power utilities: Air-cooled gas turbine cycle and combined cycle configurations," Energy, Elsevier, vol. 139(C), pages 42-51.
    8. He, Zhaoyu & Guo, Weimin & Zhang, Peng, 2022. "Performance prediction, optimal design and operational control of thermal energy storage using artificial intelligence methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    9. Ahmadi, Pouria & Dincer, Ibrahim, 2010. "Exergoenvironmental analysis and optimization of a cogeneration plant system using Multimodal Genetic Algorithm (MGA)," Energy, Elsevier, vol. 35(12), pages 5161-5172.
    10. Jia, Junxi & Li, Qiang & Luo, Ming & Wei, Liming & Abudula, Abuliti, 2011. "Effects of gas recycle on performance of solid oxide fuel cell power systems," Energy, Elsevier, vol. 36(2), pages 1068-1075.
    11. Barelli, L. & Ottaviano, A., 2014. "Solid oxide fuel cell technology coupled with methane dry reforming: A viable option for high efficiency plant with reduced CO2 emissions," Energy, Elsevier, vol. 71(C), pages 118-129.
    12. Khojaste Effatpanah, Saeed & Rahbari, Hamid Reza & Ahmadi, Mohammad H. & Farzaneh, Ali, 2023. "Green hydrogen production and utilization in a novel SOFC/GT-based zero-carbon cogeneration system: A thermodynamic evaluation," Renewable Energy, Elsevier, vol. 219(P2).
    13. Ahmadi, Pouria & Dincer, Ibrahim & Rosen, Marc A., 2011. "Exergy, exergoeconomic and environmental analyses and evolutionary algorithm based multi-objective optimization of combined cycle power plants," Energy, Elsevier, vol. 36(10), pages 5886-5898.
    14. Mehrpooya, Mehdi & Sharifzadeh, Mohammad Mehdi Moftakhari, 2017. "Conceptual and basic design of a novel integrated cogeneration power plant energy system," Energy, Elsevier, vol. 127(C), pages 516-533.
    15. Rokni, Masoud, 2014. "Biomass gasification integrated with a solid oxide fuel cell and Stirling engine," Energy, Elsevier, vol. 77(C), pages 6-18.
    16. Duan, Liqiang & Zhu, Jingnan & Yue, Long & Yang, Yongping, 2014. "Study on a gas-steam combined cycle system with CO2 capture by integrating molten carbonate fuel cell," Energy, Elsevier, vol. 74(C), pages 417-427.
    17. Lee, Young Duk & Ahn, Kook Young & Morosuk, Tatiana & Tsatsaronis, George, 2018. "Exergetic and exergoeconomic evaluation of an SOFC-Engine hybrid power generation system," Energy, Elsevier, vol. 145(C), pages 810-822.
    18. Nondy, J. & Gogoi, T.K., 2021. "Performance comparison of multi-objective evolutionary algorithms for exergetic and exergoenvironomic optimization of a benchmark combined heat and power system," Energy, Elsevier, vol. 233(C).
    19. Usón, Sergio & Kostowski, Wojciech J. & Stanek, Wojciech & Gazda, Wiesław, 2015. "Thermoecological cost of electricity, heat and cold generated in a trigeneration module fuelled with selected fossil and renewable fuels," Energy, Elsevier, vol. 92(P3), pages 308-319.
    20. Mohapatra, Alok Ku & Sanjay,, 2014. "Thermodynamic assessment of impact of inlet air cooling techniques on gas turbine and combined cycle performance," Energy, Elsevier, vol. 68(C), pages 191-203.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:134:y:2017:i:c:p:515-531. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.