IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v233-234y2019ip985-1002.html
   My bibliography  Save this article

Multi-objective optimization and comparative performance analysis of hybrid biomass-based solid oxide fuel cell/solid oxide electrolyzer cell/gas turbine using different gasification agents

Author

Listed:
  • Habibollahzade, Ali
  • Gholamian, Ehsan
  • Behzadi, Amirmohammad

Abstract

In this study, a novel configuration consisting of a biomass-based anode/cathode recycling solid oxide fuel cell integrated with a gas turbine and solid oxide electrolyzer cell is proposed for power and hydrogen production. The new configuration is modeled using Air, O2-enriched air, O2 and CO2 as the gasification agents. Accordingly, the waste heat of the SOFC is exploited in the gas turbine and subsequently the generated power of the gas turbine is transferred to a solid oxide electrolyzer cell unit for hydrogen production. Consequently, the proposed system is analyzed and compared from energy, exergy and exergoeconomic viewpoints using different gasification agents through the parametric study. Subsequently, the system in which pure CO2 is considered as the gasification agent is optimized by multi-objective optimization method based on genetic algorithm. Accordingly, the optimal solution points are gathered as four Pareto frontiers considering exergy efficiency, total product cost, levelized emissions and rate of hydrogen production as the objective functions. The results of parametric study show that the highest exergy efficiency/power production at the same time the lowest total product cost are expected for the system using O2 as the gasification agent. On the other hand, using CO2 as the gasification agent (by recycling 20% of the emitted CO2 into the gasifier) leads to the highest hydrogen production rate and the lowest levelized emissions in a wide range of the effective parameters. Considering exergy efficiency and total product cost as the objective functions, the results of the multi-objective optimization indicate that, exergy efficiency and total product cost would be 45.25% and 16.21 $/GJ, respectively at the optimum operating condition. Furthermore, results of multi-objective optimization from hydrogen production rate and levelized emissions viewpoints show that the corresponding values may be 8.561 kg/h and 7.745 t/MWh, respectively.

Suggested Citation

  • Habibollahzade, Ali & Gholamian, Ehsan & Behzadi, Amirmohammad, 2019. "Multi-objective optimization and comparative performance analysis of hybrid biomass-based solid oxide fuel cell/solid oxide electrolyzer cell/gas turbine using different gasification agents," Applied Energy, Elsevier, vol. 233, pages 985-1002.
  • Handle: RePEc:eee:appene:v:233-234:y:2019:i::p:985-1002
    DOI: 10.1016/j.apenergy.2018.10.075
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S030626191831643X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2018.10.075?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Azizi, Mohammad Ali & Brouwer, Jacob, 2018. "Progress in solid oxide fuel cell-gas turbine hybrid power systems: System design and analysis, transient operation, controls and optimization," Applied Energy, Elsevier, vol. 215(C), pages 237-289.
    2. Behzadi, Amirmohammad & Gholamian, Ehsan & Houshfar, Ehsan & Habibollahzade, Ali, 2018. "Multi-objective optimization and exergoeconomic analysis of waste heat recovery from Tehran's waste-to-energy plant integrated with an ORC unit," Energy, Elsevier, vol. 160(C), pages 1055-1068.
    3. Jia, Junxi & Li, Qiang & Luo, Ming & Wei, Liming & Abudula, Abuliti, 2011. "Effects of gas recycle on performance of solid oxide fuel cell power systems," Energy, Elsevier, vol. 36(2), pages 1068-1075.
    4. Casas Ledón, Yannay & Arteaga-Perez, Luis E. & Toledo, Juan & Dewulf, Jo, 2015. "Exergoeconomic evaluation of an ethanol-fueled solid oxide fuel cell power plant," Energy, Elsevier, vol. 93(P2), pages 1287-1295.
    5. Yao, Zhiyi & You, Siming & Ge, Tianshu & Wang, Chi-Hwa, 2018. "Biomass gasification for syngas and biochar co-production: Energy application and economic evaluation," Applied Energy, Elsevier, vol. 209(C), pages 43-55.
    6. Sigurjonsson, Hafthor Ægir & Clausen, Lasse R., 2018. "Solution for the future smart energy system: A polygeneration plant based on reversible solid oxide cells and biomass gasification producing either electrofuel or power," Applied Energy, Elsevier, vol. 216(C), pages 323-337.
    7. Oryshchyn, Danylo & Harun, Nor Farida & Tucker, David & Bryden, Kenneth M. & Shadle, Lawrence, 2018. "Fuel utilization effects on system efficiency in solid oxide fuel cell gas turbine hybrid systems," Applied Energy, Elsevier, vol. 228(C), pages 1953-1965.
    8. Tan, Luzhi & Dong, Xiaoming & Gong, Zhiqiang & Wang, Mingtao, 2017. "Investigation on performance of an integrated SOFC-GE-KC power generation system using gaseous fuel from biomass gasification," Renewable Energy, Elsevier, vol. 107(C), pages 448-461.
    9. Giarola, Sara & Forte, Ornella & Lanzini, Andrea & Gandiglio, Marta & Santarelli, Massimo & Hawkes, Adam, 2018. "Techno-economic assessment of biogas-fed solid oxide fuel cell combined heat and power system at industrial scale," Applied Energy, Elsevier, vol. 211(C), pages 689-704.
    10. Papurello, D. & Borchiellini, R. & Bareschino, P. & Chiodo, V. & Freni, S. & Lanzini, A. & Pepe, F. & Ortigoza, G.A. & Santarelli, M, 2014. "Performance of a Solid Oxide Fuel Cell short-stack with biogas feeding," Applied Energy, Elsevier, vol. 125(C), pages 254-263.
    11. Zhao, Hongbin & Jiang, Ting & Hou, Hucan, 2015. "Performance analysis of the SOFC–CCHP system based on H2O/Li–Br absorption refrigeration cycle fueled by coke oven gas," Energy, Elsevier, vol. 91(C), pages 983-993.
    12. Harun, Nor Farida & Tucker, David & Adams, Thomas A., 2016. "Impact of fuel composition transients on SOFC performance in gas turbine hybrid systems," Applied Energy, Elsevier, vol. 164(C), pages 446-461.
    13. Chen, Bin & Xu, Haoran & Ni, Meng, 2017. "Modelling of SOEC-FT reactor: Pressure effects on methanation process," Applied Energy, Elsevier, vol. 185(P1), pages 814-824.
    14. Sadeghi, M. & Mehr, A.S. & Zar, M. & Santarelli, M., 2018. "Multi-objective optimization of a novel syngas fed SOFC power plant using a downdraft gasifier," Energy, Elsevier, vol. 148(C), pages 16-31.
    15. Sharifzadeh, Mahdi & Meghdari, Mojtaba & Rashtchian, Davood, 2017. "Multi-objective design and operation of Solid Oxide Fuel Cell (SOFC) Triple Combined-cycle Power Generation systems: Integrating energy efficiency and operational safety," Applied Energy, Elsevier, vol. 185(P1), pages 345-361.
    16. Shamoushaki, Moein & Ehyaei, M.A. & Ghanatir, Farrokh, 2017. "Exergy, economic and environmental analysis and multi-objective optimization of a SOFC-GT power plant," Energy, Elsevier, vol. 134(C), pages 515-531.
    17. Herz, Gregor & Reichelt, Erik & Jahn, Matthias, 2018. "Techno-economic analysis of a co-electrolysis-based synthesis process for the production of hydrocarbons," Applied Energy, Elsevier, vol. 215(C), pages 309-320.
    18. Cuneo, A. & Zaccaria, V. & Tucker, D. & Sorce, A., 2018. "Gas turbine size optimization in a hybrid system considering SOFC degradation," Applied Energy, Elsevier, vol. 230(C), pages 855-864.
    19. Cinti, Giovanni & Baldinelli, Arianna & Di Michele, Alessandro & Desideri, Umberto, 2016. "Integration of Solid Oxide Electrolyzer and Fischer-Tropsch: A sustainable pathway for synthetic fuel," Applied Energy, Elsevier, vol. 162(C), pages 308-320.
    20. Xu, Haoran & Chen, Bin & Tan, Peng & Cai, Weizi & Wu, Yiyang & Zhang, Houcheng & Ni, Meng, 2018. "A feasible way to handle the heat management of direct carbon solid oxide fuel cells," Applied Energy, Elsevier, vol. 226(C), pages 881-890.
    21. Sanz-Bermejo, Javier & Muñoz-Antón, Javier & Gonzalez-Aguilar, José & Romero, Manuel, 2014. "Optimal integration of a solid-oxide electrolyser cell into a direct steam generation solar tower plant for zero-emission hydrogen production," Applied Energy, Elsevier, vol. 131(C), pages 238-247.
    22. Luo, Yu & Wu, Xiao-yu & Shi, Yixiang & Ghoniem, Ahmed F. & Cai, Ningsheng, 2018. "Exergy analysis of an integrated solid oxide electrolysis cell-methanation reactor for renewable energy storage," Applied Energy, Elsevier, vol. 215(C), pages 371-383.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yongjie Zhong & Hongwei Zhou & Xuanjun Zong & Zhou Xu & Yonghui Sun, 2019. "Hierarchical Multi-Objective Fuzzy Collaborative Optimization of Integrated Energy System under Off-Design Performance," Energies, MDPI, vol. 12(5), pages 1-27, March.
    2. Wang, Chaoyang & Chen, Ming & Liu, Ming & Yan, Junjie, 2020. "Dynamic modeling and parameter analysis study on reversible solid oxide cells during mode switching transient processes," Applied Energy, Elsevier, vol. 263(C).
    3. Razmi, Amir Reza & Hanifi, Amir Reza & Shahbakhti, Mahdi, 2023. "Design, thermodynamic, and economic analyses of a green hydrogen storage concept based on solid oxide electrolyzer/fuel cells and heliostat solar field," Renewable Energy, Elsevier, vol. 215(C).
    4. Xiong, Linyun & Li, Penghan & Wang, Ziqiang & Wang, Jie, 2020. "Multi-agent based multi objective renewable energy management for diversified community power consumers," Applied Energy, Elsevier, vol. 259(C).
    5. Roy, Dibyendu & Samanta, Samiran & Ghosh, Sudip, 2020. "Performance assessment of a biomass fuelled advanced hybrid power generation system," Renewable Energy, Elsevier, vol. 162(C), pages 639-661.
    6. Behzadi, Amirmohammad & Arabkoohsar, Ahmad & Gholamian, Ehsan, 2020. "Multi-criteria optimization of a biomass-fired proton exchange membrane fuel cell integrated with organic rankine cycle/thermoelectric generator using different gasification agents," Energy, Elsevier, vol. 201(C).
    7. Habibollahzade, Ali & Rosen, Marc A., 2021. "Syngas-fueled solid oxide fuel cell functionality improvement through appropriate feedstock selection and multi-criteria optimization using Air/O2-enriched-air gasification agents," Applied Energy, Elsevier, vol. 286(C).
    8. Al-Rashed, Abdullah A.A.A. & Afrand, Masoud, 2021. "Multi-criteria exergoeconomic optimization for a combined gas turbine-supercritical CO2 plant with compressor intake cooling fueled by biogas from anaerobic digestion," Energy, Elsevier, vol. 223(C).
    9. Ayub, Yousaf & Ren, Jingzheng & Shi, Tao & Shen, Weifeng & He, Chang, 2023. "Poultry litter valorization: Development and optimization of an electro-chemical and thermal tri-generation process using an extreme gradient boosting algorithm," Energy, Elsevier, vol. 263(PC).
    10. Zhao, Xinyue & Chen, Heng & Zheng, Qiwei & Liu, Jun & Pan, Peiyuan & Xu, Gang & Zhao, Qinxin & Jiang, Xue, 2023. "Thermo-economic analysis of a novel hydrogen production system using medical waste and biogas with zero carbon emission," Energy, Elsevier, vol. 265(C).
    11. Teng, Su & Hamrang, Farzad & Ashraf Talesh, Seyed Saman, 2021. "Economic performance assessment of a novel combined power generation cycle," Energy, Elsevier, vol. 231(C).
    12. Wu, Zhen & Zhu, Pengfei & Yao, Jing & Zhang, Shengan & Ren, Jianwei & Yang, Fusheng & Zhang, Zaoxiao, 2020. "Combined biomass gasification, SOFC, IC engine, and waste heat recovery system for power and heat generation: Energy, exergy, exergoeconomic, environmental (4E) evaluations," Applied Energy, Elsevier, vol. 279(C).
    13. Chen, Yi & Niroumandi, Hossein & Duan, Yinying, 2021. "Thermodynamic and economic analyses of a syngas-fueled high-temperature fuel cell with recycling processes in novel electricity and freshwater cogeneration plant," Energy, Elsevier, vol. 235(C).
    14. Zhang, Yao & Salem, Mohamed & Elmasry, Yasser & Hoang, Anh Tuan & Galal, Ahmed M. & Pham Nguyen, Dang Khoa & Wae-hayee, Makatar, 2022. "Triple-objective optimization and electrochemical/technical/environmental study of biomass gasification process for a novel high-temperature fuel cell/electrolyzer/desalination scheme," Renewable Energy, Elsevier, vol. 201(P1), pages 379-399.
    15. Fan, Guangli & Ahmadi, A. & Ehyaei, M.A. & Das, Biplab, 2021. "Energy, exergy, economic and exergoenvironmental analyses of polygeneration system integrated gas cycle, absorption chiller, and Copper-Chlorine thermochemical cycle to produce power, cooling, and hyd," Energy, Elsevier, vol. 222(C).
    16. Razmi, Amir Reza & Arabkoohsar, Ahmad & Nami, Hossein, 2020. "Thermoeconomic analysis and multi-objective optimization of a novel hybrid absorption/recompression refrigeration system," Energy, Elsevier, vol. 210(C).
    17. Chang, Yue & Jia, Yulong & Hong, Tan, 2023. "Comprehensive analysis and multi-objective optimization of an innovative power generation system using biomass gasification and LNG regasification processes," Energy, Elsevier, vol. 283(C).
    18. Roy, Dibyendu & Samanta, Samiran & Roy, Sumit & Smallbone, Andrew & Paul Roskilly, Anthony, 2023. "Fuel cell integrated carbon negative power generation from biomass," Applied Energy, Elsevier, vol. 331(C).
    19. Wang, Qiushi & Duan, Liqiang & Zheng, Nan & Lu, Ziyi, 2023. "4E Analysis of a novel combined cooling, heating and power system coupled with solar thermochemical process and energy storage," Energy, Elsevier, vol. 275(C).
    20. Li, Xiang & Wu, Junsong & Zhu, Xinyu & Liang, Huixing, 2022. "Agricultural waste-to-energy concerning a biofuel-fed molten carbonate fuel cell toward a novel trigeneration scheme; exergoeconomic/sustainability study and multi-objective optimization," Renewable Energy, Elsevier, vol. 199(C), pages 1189-1209.
    21. Mohammadi, Zahra & Ahmadi, Pouria & Ashjaee, Mehdi, 2023. "Proposal and multi-criteria optimization of a novel biomass-based and PEMfuel cell system for generating clean power for building applications," Energy, Elsevier, vol. 277(C).
    22. Sattari Sadat, Seyed Mohammad & Ghaebi, Hadi & Lavasani, Arash Mirabdolah, 2020. "4E analyses of an innovative polygeneration system based on SOFC," Renewable Energy, Elsevier, vol. 156(C), pages 986-1007.
    23. Nemati Mofarrah, Ali & Jalalvand, Meysam & Abdolmaleki, Abbas, 2023. "Design, multi-aspect analyses, and multi-objective optimization of a biomass/geothermal-based cogeneration of power and freshwater," Energy, Elsevier, vol. 282(C).
    24. Akrami, Ehsan & Ameri, Mohammad & Rocco, Matteo V., 2021. "Conceptual design, exergoeconomic analysis and multi-objective optimization for a novel integration of biomass-fueled power plant with MCFC-cryogenic CO2 separation unit for low-carbon power productio," Energy, Elsevier, vol. 227(C).
    25. Sun, Wen & Feng, Li & Abed, Azher M. & Sharma, Aman & Arsalanloo, Akbar, 2022. "Thermoeconomic assessment of a renewable hybrid RO/PEM electrolyzer integrated with Kalina cycle and solar dryer unit using response surface methodology (RSM)," Energy, Elsevier, vol. 260(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cheng, Cai & Cherian, Jacob & Sial, Muhammad Safdar & Zaman, Umer & Niroumandi, Hosein, 2021. "Performance assessment of a novel biomass-based solid oxide fuel cell power generation cycle; Economic analysis and optimization," Energy, Elsevier, vol. 224(C).
    2. Kwan, Trevor Hocksun & Katsushi, Fujii & Shen, Yongting & Yin, Shunan & Zhang, Yongchao & Kase, Kiwamu & Yao, Qinghe, 2020. "Comprehensive review of integrating fuel cells to other energy systems for enhanced performance and enabling polygeneration," Renewable and Sustainable Energy Reviews, Elsevier, vol. 128(C).
    3. Ding, Xiaoyi & Lv, Xiaojing & Weng, Yiwu, 2019. "Coupling effect of operating parameters on performance of a biogas-fueled solid oxide fuel cell/gas turbine hybrid system," Applied Energy, Elsevier, vol. 254(C).
    4. Shayan, E. & Zare, V. & Mirzaee, I., 2019. "On the use of different gasification agents in a biomass fueled SOFC by integrated gasifier: A comparative exergo-economic evaluation and optimization," Energy, Elsevier, vol. 171(C), pages 1126-1138.
    5. Habibollahzade, Ali & Rosen, Marc A., 2021. "Syngas-fueled solid oxide fuel cell functionality improvement through appropriate feedstock selection and multi-criteria optimization using Air/O2-enriched-air gasification agents," Applied Energy, Elsevier, vol. 286(C).
    6. Cheng, Tianliang & Jiang, Jianhua & Wu, Xiaodong & Li, Xi & Xu, Mengxue & Deng, Zhonghua & Li, Jian, 2019. "Application oriented multiple-objective optimization, analysis and comparison of solid oxide fuel cell systems with different configurations," Applied Energy, Elsevier, vol. 235(C), pages 914-929.
    7. Ji, Zhixing & Qin, Jiang & Cheng, Kunlin & Guo, Fafu & Zhang, Silong & Zhou, Chaoying & Dong, Peng, 2020. "Determination of the safe operation zone for a turbine-less and solid oxide fuel cell hybrid electric jet engine on unmanned aerial vehicles," Energy, Elsevier, vol. 202(C).
    8. Wu, Zhen & Zhu, Pengfei & Yao, Jing & Zhang, Shengan & Ren, Jianwei & Yang, Fusheng & Zhang, Zaoxiao, 2020. "Combined biomass gasification, SOFC, IC engine, and waste heat recovery system for power and heat generation: Energy, exergy, exergoeconomic, environmental (4E) evaluations," Applied Energy, Elsevier, vol. 279(C).
    9. Polverino, Pierpaolo & Sorrentino, Marco & Pianese, Cesare, 2017. "A model-based diagnostic technique to enhance faults isolability in Solid Oxide Fuel Cell systems," Applied Energy, Elsevier, vol. 204(C), pages 1198-1214.
    10. Fiammetta Rita Bianchi & Arianna Baldinelli & Linda Barelli & Giovanni Cinti & Emilio Audasso & Barbara Bosio, 2020. "Multiscale Modeling for Reversible Solid Oxide Cell Operation," Energies, MDPI, vol. 13(19), pages 1-16, September.
    11. Ramadhani, F. & Hussain, M.A. & Mokhlis, H. & Hajimolana, S., 2017. "Optimization strategies for Solid Oxide Fuel Cell (SOFC) application: A literature survey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 460-484.
    12. Iliya Krastev Iliev & Antonina Andreevna Filimonova & Andrey Alexandrovich Chichirov & Natalia Dmitrievna Chichirova & Alexander Vadimovich Pechenkin & Artem Sergeevich Vinogradov, 2023. "Theoretical and Experimental Studies of Combined Heat and Power Systems with SOFCs," Energies, MDPI, vol. 16(4), pages 1-17, February.
    13. Reznicek, Evan P. & Braun, Robert J., 2020. "Reversible solid oxide cell systems for integration with natural gas pipeline and carbon capture infrastructure for grid energy management," Applied Energy, Elsevier, vol. 259(C).
    14. Mehr, A.S. & Moharramian, A. & Hossainpour, S. & Pavlov, Denis A., 2020. "Effect of blending hydrogen to biogas fuel driven from anaerobic digestion of wastewater on the performance of a solid oxide fuel cell system," Energy, Elsevier, vol. 202(C).
    15. Liang, Wenxing & Yu, Zeting & Bian, Feiyu & Wu, Haonan & Zhang, Kaifan & Ji, Shaobo & Cui, Bo, 2023. "Techno-economic-environmental analysis and optimization of biomass-based SOFC poly-generation system," Energy, Elsevier, vol. 285(C).
    16. Costas Athanasiou & Christos Drosakis & Gaylord Kabongo Booto & Costas Elmasides, 2022. "Economic Feasibility of Power/Heat Cogeneration by Biogas–Solid Oxide Fuel Cell (SOFC) Integrated Systems," Energies, MDPI, vol. 16(1), pages 1-30, December.
    17. Freire Ordóñez, Diego & Shah, Nilay & Guillén-Gosálbez, Gonzalo, 2021. "Economic and full environmental assessment of electrofuels via electrolysis and co-electrolysis considering externalities," Applied Energy, Elsevier, vol. 286(C).
    18. Hosseinpour, Javad & Chitsaz, Ata & Eisavi, Beneta & Yari, Mortaza, 2018. "Investigation on performance of an integrated SOFC-Goswami system using wood gasification," Energy, Elsevier, vol. 148(C), pages 614-628.
    19. Huang, Yu & Turan, Ali, 2022. "Flexible power generation based on solid oxide fuel cell and twin-shaft free turbine engine: Mechanical equilibrium running and design analysis," Applied Energy, Elsevier, vol. 315(C).
    20. Akrami, Ehsan & Ameri, Mohammad & Rocco, Matteo V., 2021. "Conceptual design, exergoeconomic analysis and multi-objective optimization for a novel integration of biomass-fueled power plant with MCFC-cryogenic CO2 separation unit for low-carbon power productio," Energy, Elsevier, vol. 227(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:233-234:y:2019:i::p:985-1002. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.