IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i10p2849-d555108.html
   My bibliography  Save this article

Thermo-Economic Analysis on Integrated CO 2 , Organic Rankine Cycles, and NaClO Plant Using Liquefied Natural Gas

Author

Listed:
  • Tri Tjahjono

    (Department of Mechanical Engineering, Universitas Muhammadiyah Surakarta, Surakarta 57102, Indonesia)

  • Mehdi Ali Ehyaei

    (Department of Mechanical Engineering, Pardis Branch, Islamic Azad University, Pardis New City 1468995513, Iran)

  • Abolfazl Ahmadi

    (Department of Energy Systems Engineering, School of Advanced Technologies, Iran University of Science and Technology, Tehran 1311416846, Iran)

  • Siamak Hoseinzadeh

    (Department of Planning, Design, and Technology of Architecture, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Roma, Italy)

  • Saim Memon

    (Solar Thermal Vacuum Engineering Research Group, London Centre for Energy Engineering, School of Engineering, London South Bank University, London SE1 0AA, UK)

Abstract

The thermal energy conversion of natural gas (NG) using appropriate configuration cycles represents one of the best nonrenewable energy resources because of its high heating value and low environmental effects. The natural gas can be converted to liquefied natural gas (LNG), via the liquefaction process, which is used as a heat source and sink in various multigeneration cycles. In this paper, a new configuration cycle is proposed using LNG as a heat source and heat sink. This new proposed cycle includes the CO 2 cycle, the organic Rankine cycle (ORC), a heater, a cooler, an NaClO plant, and reverse osmosis. This cycle generates electrical power, heating and cooling energy, potable water (PW), hydrogen, and salt all at the same time. For this purpose, one computer program is provided in an engineering equation solver for energy, exergy, and thermo-economic analyses. The results for each subsystem are validated by previous researches in this field. This system produces 10.53 GWh electrical energy, 276.4 GWh cooling energy, 1783 GWh heating energy, 17,280 m 3 potable water, 739.56 tons of hydrogen, and 383.78 tons of salt in a year. The proposed system energy efficiency is 54.3%, while the exergy efficiency is equal to 13.1%. The economic evaluation showed that the payback period, the simple payback period, the net present value, and internal rate of return are equal to 7.9 years, 6.9 years, 908.9 million USD, and 0.138, respectively.

Suggested Citation

  • Tri Tjahjono & Mehdi Ali Ehyaei & Abolfazl Ahmadi & Siamak Hoseinzadeh & Saim Memon, 2021. "Thermo-Economic Analysis on Integrated CO 2 , Organic Rankine Cycles, and NaClO Plant Using Liquefied Natural Gas," Energies, MDPI, vol. 14(10), pages 1-24, May.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:10:p:2849-:d:555108
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/10/2849/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/10/2849/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Edalati, Saeed & Ameri, Mehran & Iranmanesh, Masoud & Tarmahi, Hakimeh & Gholampour, Maysam, 2016. "Technical and economic assessments of grid-connected photovoltaic power plants: Iran case study," Energy, Elsevier, vol. 114(C), pages 923-934.
    2. Yu, Haoshui & Kim, Donghoi & Gundersen, Truls, 2019. "A study of working fluids for Organic Rankine Cycles (ORCs) operating across and below ambient temperature to utilize Liquefied Natural Gas (LNG) cold energy," Energy, Elsevier, vol. 167(C), pages 730-739.
    3. Pierobon, Leonardo & Nguyen, Tuong-Van & Larsen, Ulrik & Haglind, Fredrik & Elmegaard, Brian, 2013. "Multi-objective optimization of organic Rankine cycles for waste heat recovery: Application in an offshore platform," Energy, Elsevier, vol. 58(C), pages 538-549.
    4. Kumar, Satish & Kwon, Hyouk-Tae & Choi, Kwang-Ho & Lim, Wonsub & Cho, Jae Hyun & Tak, Kyungjae & Moon, Il, 2011. "LNG: An eco-friendly cryogenic fuel for sustainable development," Applied Energy, Elsevier, vol. 88(12), pages 4264-4273.
    5. Fuhaid Alshammari & Apostolos Karvountzis-Kontakiotis & Apostolos Pesyridis & Muhammad Usman, 2018. "Expander Technologies for Automotive Engine Organic Rankine Cycle Applications," Energies, MDPI, vol. 11(7), pages 1-36, July.
    6. Omoregie, Uyiosa, 2019. "After the Crash - Oil Price Recovery and LNG Project Viability," SocArXiv 35cna, Center for Open Science.
    7. Taheri, M.H. & Mosaffa, A.H. & Farshi, L. Garousi, 2017. "Energy, exergy and economic assessments of a novel integrated biomass based multigeneration energy system with hydrogen production and LNG regasification cycle," Energy, Elsevier, vol. 125(C), pages 162-177.
    8. Qi, Meng & Park, Jinwoo & Kim, Jeongdong & Lee, Inkyu & Moon, Il, 2020. "Advanced integration of LNG regasification power plant with liquid air energy storage: Enhancements in flexibility, safety, and power generation," Applied Energy, Elsevier, vol. 269(C).
    9. Lazzaretto, Andrea & Tsatsaronis, George, 2006. "SPECO: A systematic and general methodology for calculating efficiencies and costs in thermal systems," Energy, Elsevier, vol. 31(8), pages 1257-1289.
    10. Pattanayak, Lalatendu & Padhi, Biranchi Narayana, 2018. "Thermodynamic analysis of combined cycle power plant using regasification cold energy from LNG terminal," Energy, Elsevier, vol. 164(C), pages 1-9.
    11. Li, Zhi-Guo & Cheng, Han & Gu, Tian-Yao, 2019. "Research on dynamic relationship between natural gas consumption and economic growth in China," Structural Change and Economic Dynamics, Elsevier, vol. 49(C), pages 334-339.
    12. Atienza-Márquez, Antonio & Bruno, Joan Carles & Akisawa, Atsushi & Coronas, Alberto, 2019. "Performance analysis of a combined cold and power (CCP) system with exergy recovery from LNG-regasification," Energy, Elsevier, vol. 183(C), pages 448-461.
    13. Xue, Xiaodi & Guo, Cong & Du, Xiaoze & Yang, Lijun & Yang, Yongping, 2015. "Thermodynamic analysis and optimization of a two-stage organic Rankine cycle for liquefied natural gas cryogenic exergy recovery," Energy, Elsevier, vol. 83(C), pages 778-787.
    14. Lecompte, S. & Huisseune, H. & van den Broek, M. & De Schampheleire, S. & De Paepe, M., 2013. "Part load based thermo-economic optimization of the Organic Rankine Cycle (ORC) applied to a combined heat and power (CHP) system," Applied Energy, Elsevier, vol. 111(C), pages 871-881.
    15. Nami, Hossein & Ertesvåg, Ivar S. & Agromayor, Roberto & Riboldi, Luca & Nord, Lars O., 2018. "Gas turbine exhaust gas heat recovery by organic Rankine cycles (ORC) for offshore combined heat and power applications - Energy and exergy analysis," Energy, Elsevier, vol. 165(PB), pages 1060-1071.
    16. Naseri, Ali & Bidi, Mokhtar & Ahmadi, Mohammad H., 2017. "Thermodynamic and exergy analysis of a hydrogen and permeate water production process by a solar-driven transcritical CO2 power cycle with liquefied natural gas heat sink," Renewable Energy, Elsevier, vol. 113(C), pages 1215-1228.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhao, Tengfei & Ahmad, Sayed Fayaz & Agrawal, Manoj Kumar & Ahmad Bani Ahmad, Ahmad Yahiya & Ghfar, Ayman A. & Valsalan, Prajoona & Shah, Nehad Ali & Gao, Xiaomin, 2024. "Design and thermo-enviro-economic analyses of a novel thermal design process for a CCHP-desalination application using LNG regasification integrated with a gas turbine power plant," Energy, Elsevier, vol. 295(C).
    2. Mahmoudan, Alireza & Samadof, Parviz & Hosseinzadeh, Siamak & Garcia, Davide Astiaso, 2021. "A multigeneration cascade system using ground-source energy with cold recovery: 3E analyses and multi-objective optimization," Energy, Elsevier, vol. 233(C).
    3. Baofeng Yao & Xu Ping & Hongguang Zhang, 2021. "Dynamic Response Characteristics Analysis and Energy, Exergy, and Economic (3E) Evaluation of Dual Loop Organic Rankine Cycle (DORC) for CNG Engine Waste Heat Recovery," Energies, MDPI, vol. 14(19), pages 1-32, September.
    4. Shuo Li & Huili Zhang & Jiapei Nie & Raf Dewil & Jan Baeyens & Yimin Deng, 2021. "The Direct Reduction of Iron Ore with Hydrogen," Sustainability, MDPI, vol. 13(16), pages 1-15, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhao, Liang & Zhang, Jiulei & Wang, Xiu & Feng, Junsheng & Dong, Hui & Kong, Xiangwei, 2020. "Dynamic exergy analysis of a novel LNG cold energy utilization system combined with cold, heat and power," Energy, Elsevier, vol. 212(C).
    2. Huang, Z.F. & Wan, Y.D. & Soh, K.Y. & Islam, M.R. & Chua, K.J., 2022. "Off-design and flexibility analyses of combined cooling and power based liquified natural gas (LNG) cold energy utilization system under fluctuating regasification rates," Applied Energy, Elsevier, vol. 310(C).
    3. Qi, Meng & Park, Jinwoo & Kim, Jeongdong & Lee, Inkyu & Moon, Il, 2020. "Advanced integration of LNG regasification power plant with liquid air energy storage: Enhancements in flexibility, safety, and power generation," Applied Energy, Elsevier, vol. 269(C).
    4. M. Ehyaei & M. Kasaeian & Stéphane Abanades & Armin Razmjoo & Hamed Afshari & Marc Rosen & Biplab Das, 2023. "Natural gas‐fueled multigeneration for reducing environmental effects of brine and increasing product diversity: Thermodynamic and economic analyses," Post-Print hal-04113893, HAL.
    5. Fan, Guangli & Ahmadi, A. & Ehyaei, M.A. & Das, Biplab, 2021. "Energy, exergy, economic and exergoenvironmental analyses of polygeneration system integrated gas cycle, absorption chiller, and Copper-Chlorine thermochemical cycle to produce power, cooling, and hyd," Energy, Elsevier, vol. 222(C).
    6. Tang, Changlong & Hu, Fan & Zhou, Xiaoguang & Li, Yajun, 2022. "Optimization methods for flexibility and stability related to the operation of LNG receiving terminals," Energy, Elsevier, vol. 250(C).
    7. Sun, Zhixin & Xu, Fuquan & Wang, Shujia & Lai, Jianpeng & Lin, Kui, 2017. "Comparative study of Rankine cycle configurations utilizing LNG cold energy under different NG distribution pressures," Energy, Elsevier, vol. 139(C), pages 380-393.
    8. Li, Yongyi & Liu, Yujia & Zhang, Guoqiang & Yang, Yongping, 2020. "Thermodynamic analysis of a novel combined cooling and power system utilizing liquefied natural gas (LNG) cryogenic energy and low-temperature waste heat," Energy, Elsevier, vol. 199(C).
    9. Guillermo Valencia Ochoa & Carlos Acevedo Peñaloza & Jorge Duarte Forero, 2019. "Thermoeconomic Optimization with PSO Algorithm of Waste Heat Recovery Systems Based on Organic Rankine Cycle System for a Natural Gas Engine," Energies, MDPI, vol. 12(21), pages 1-21, October.
    10. Sanne Lemmens, 2016. "Cost Engineering Techniques and Their Applicability for Cost Estimation of Organic Rankine Cycle Systems," Energies, MDPI, vol. 9(7), pages 1-18, June.
    11. Lecompte, S. & Huisseune, H. & van den Broek, M. & De Paepe, M., 2015. "Methodical thermodynamic analysis and regression models of organic Rankine cycle architectures for waste heat recovery," Energy, Elsevier, vol. 87(C), pages 60-76.
    12. Lu, Yilin & Xu, Jingxuan & Chen, Xi & Tian, Yafen & Zhang, Hua, 2023. "Design and thermodynamic analysis of an advanced liquid air energy storage system coupled with LNG cold energy, ORCs and natural resources," Energy, Elsevier, vol. 275(C).
    13. Li, Jing & Alvi, Jahan Zeb & Pei, Gang & Su, Yuehong & Li, Pengcheng & Gao, Guangtao & Ji, Jie, 2016. "Modelling of organic Rankine cycle efficiency with respect to the equivalent hot side temperature," Energy, Elsevier, vol. 115(P1), pages 668-683.
    14. Bahlouli, K. & Khoshbakhti Saray, R. & Sarabchi, N., 2015. "Parametric investigation and thermo-economic multi-objective optimization of an ammonia–water power/cooling cycle coupled with an HCCI (homogeneous charge compression ignition) engine," Energy, Elsevier, vol. 86(C), pages 672-684.
    15. Atienza-Márquez, Antonio & Bruno, Joan Carles & Akisawa, Atsushi & Coronas, Alberto, 2019. "Performance analysis of a combined cold and power (CCP) system with exergy recovery from LNG-regasification," Energy, Elsevier, vol. 183(C), pages 448-461.
    16. Boukelia, T.E. & Arslan, O. & Djimli, S. & Kabar, Y., 2023. "ORC fluids selection for a bottoming binary geothermal power plant integrated with a CSP plant," Energy, Elsevier, vol. 265(C).
    17. Serafino, Aldo & Obert, Benoit & Vergé, Léa & Cinnella, Paola, 2020. "Robust optimization of an organic Rankine cycle for geothermal application," Renewable Energy, Elsevier, vol. 161(C), pages 1120-1129.
    18. Steven Lecompte & Sanne Lemmens & Henk Huisseune & Martijn Van den Broek & Michel De Paepe, 2015. "Multi-Objective Thermo-Economic Optimization Strategy for ORCs Applied to Subcritical and Transcritical Cycles for Waste Heat Recovery," Energies, MDPI, vol. 8(4), pages 1-28, April.
    19. Davide Borelli & Francesco Devia & Corrado Schenone & Federico Silenzi & Luca A. Tagliafico, 2021. "Dynamic Modelling of LNG Powered Combined Energy Systems in Port Areas," Energies, MDPI, vol. 14(12), pages 1-18, June.
    20. Wu, Dan & Aye, Lu & Ngo, Tuan & Mendis, Priyan, 2017. "Optimisation and financial analysis of an organic Rankine cycle cooling system driven by facade integrated solar collectors," Applied Energy, Elsevier, vol. 185(P1), pages 172-182.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:10:p:2849-:d:555108. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.