IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v222y2021ics0360544221002309.html
   My bibliography  Save this article

Thermodynamic performance analysis of state of the art gas turbine cycles with inter-stage turbine reheat and steam injection

Author

Listed:
  • Kayadelen, Hasan Kayhan
  • Ust, Yasin
  • Bashan, Veysi

Abstract

Inter-stage turbine reheat is an effective gas turbine retrofit which can easily be used with simple and steam injected (SI) gas turbines as well. Although reheat provides higher inlet temperatures for HRSG in SI cycles and also increases net work output significantly, reheat combustor increases fuel consumption and thermal efficiency may still decrease. Therefore effects of reheat and steam injection in terms of thermodynamic performance require a detailed thermodynamic investigation. In this regard, simple, reheat, steam injected (STIG) and reheat steam injected (RHSTIG) gas turbine cycles are compared using the state of the art cycle parameters. Optimal performance parameters are determined using a new comprehensive cycle model which simulates combustion process regarding 14 exhaust species. It has been found that reheat provides a significant improvement on the cycle net work but it is not suitable for cycles having low pressure ratios if the only concern is maximum thermal efficiency. Results show that a good compromise between the maximum net work and maximum thermal efficiency is observed when reheat pressure is equal to the 0.4th power to the maximum cycle pressure. At this case, reheat provided 35.5% improvement in net cycle work with an efficiency penalty of only 5%.

Suggested Citation

  • Kayadelen, Hasan Kayhan & Ust, Yasin & Bashan, Veysi, 2021. "Thermodynamic performance analysis of state of the art gas turbine cycles with inter-stage turbine reheat and steam injection," Energy, Elsevier, vol. 222(C).
  • Handle: RePEc:eee:energy:v:222:y:2021:i:c:s0360544221002309
    DOI: 10.1016/j.energy.2021.119981
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544221002309
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2021.119981?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lee, Jong Jun & Jeon, Mu Sung & Kim, Tong Seop, 2010. "The influence of water and steam injection on the performance of a recuperated cycle microturbine for combined heat and power application," Applied Energy, Elsevier, vol. 87(4), pages 1307-1316, April.
    2. Kayadelen, Hasan Kayhan, 2018. "A multi-featured model for estimation of thermodynamic properties, adiabatic flame temperature and equilibrium combustion products of fuels, fuel blends, surrogates and fuel additives," Energy, Elsevier, vol. 143(C), pages 241-256.
    3. Kayadelen, Hasan Kayhan & Ust, Yasin, 2017. "Thermodynamic, environmental and economic performance optimization of simple, regenerative, STIG and RSTIG gas turbine cycles," Energy, Elsevier, vol. 121(C), pages 751-771.
    4. Jonsson, Maria & Yan, Jinyue, 2005. "Humidified gas turbines—a review of proposed and implemented cycles," Energy, Elsevier, vol. 30(7), pages 1013-1078.
    5. Roumeliotis, I. & Mathioudakis, K., 2010. "Evaluation of water injection effect on compressor and engine performance and operability," Applied Energy, Elsevier, vol. 87(4), pages 1207-1216, April.
    6. Poullikkas, Andreas, 2005. "An overview of current and future sustainable gas turbine technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 9(5), pages 409-443, October.
    7. Saeed Bahrami & Ali Ghaffari & Marcus Thern, 2013. "Improving the Transient Performance of the Gas Turbine by Steam Injection during Frequency Dips," Energies, MDPI, vol. 6(10), pages 1-14, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. S. Hamed Fatemi Alavi & Amirreza Javaherian & S. M. S. Mahmoudi & Saeed Soltani & Marc A. Rosen, 2023. "Coupling a Gas Turbine Bottoming Cycle Using CO 2 as the Working Fluid with a Gas Cycle: Exergy Analysis Considering Combustion Chamber Steam Injection," Clean Technol., MDPI, vol. 5(3), pages 1-25, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. S. Hamed Fatemi Alavi & Amirreza Javaherian & S. M. S. Mahmoudi & Saeed Soltani & Marc A. Rosen, 2023. "Coupling a Gas Turbine Bottoming Cycle Using CO 2 as the Working Fluid with a Gas Cycle: Exergy Analysis Considering Combustion Chamber Steam Injection," Clean Technol., MDPI, vol. 5(3), pages 1-25, September.
    2. Wang, Yuzhang & Zhang, Qing & Li, Yixing & He, Ming & Weng, Shilie, 2022. "Research on the effectiveness of the key components in the HAT cycle," Applied Energy, Elsevier, vol. 306(PB).
    3. Zhang, Qing & Wang, Yuzhang & Jiang, Jiangjun & Weng, Shilie & Cao, Xiuling, 2022. "Coupling effect of key parameters of heat recovery components on the HAT cycle performance," Energy, Elsevier, vol. 238(PC).
    4. Kyoung Hoon Kim & Kyoungjin Kim, 2012. "Exergy Analysis of Overspray Process in Gas Turbine Systems," Energies, MDPI, vol. 5(8), pages 1-14, July.
    5. Anwar Hamdan Al Assaf & Abdulkarem Amhamed & Odi Fawwaz Alrebei, 2022. "State of the Art in Humidified Gas Turbine Configurations," Energies, MDPI, vol. 15(24), pages 1-32, December.
    6. Mahmood, Muhammad H. & Sultan, Muhammad & Miyazaki, Takahiko & Koyama, Shigeru & Maisotsenko, Valeriy S., 2016. "Overview of the Maisotsenko cycle – A way towards dew point evaporative cooling," Renewable and Sustainable Energy Reviews, Elsevier, vol. 66(C), pages 537-555.
    7. Chacartegui, R. & Sánchez, D. & Muñoz, J.M. & Sánchez, T., 2009. "Alternative ORC bottoming cycles FOR combined cycle power plants," Applied Energy, Elsevier, vol. 86(10), pages 2162-2170, October.
    8. Comodi, G. & Renzi, M. & Caresana, F. & Pelagalli, L., 2015. "Enhancing micro gas turbine performance in hot climates through inlet air cooling vapour compression technique," Applied Energy, Elsevier, vol. 147(C), pages 40-48.
    9. Giorgetti, S. & Bricteux, L. & Parente, A. & Blondeau, J. & Contino, F. & De Paepe, W., 2017. "Carbon capture on micro gas turbine cycles: Assessment of the performance on dry and wet operations," Applied Energy, Elsevier, vol. 207(C), pages 243-253.
    10. De Paepe, Ward & Delattin, Frank & Bram, Svend & De Ruyck, Jacques, 2012. "Steam injection experiments in a microturbine – A thermodynamic performance analysis," Applied Energy, Elsevier, vol. 97(C), pages 569-576.
    11. Saeed Bahrami & Ali Ghaffari & Marcus Thern, 2013. "Improving the Transient Performance of the Gas Turbine by Steam Injection during Frequency Dips," Energies, MDPI, vol. 6(10), pages 1-14, October.
    12. De Paepe, Ward & Montero Carrero, Marina & Bram, Svend & Contino, Francesco & Parente, Alessandro, 2017. "Waste heat recovery optimization in micro gas turbine applications using advanced humidified gas turbine cycle concepts," Applied Energy, Elsevier, vol. 207(C), pages 218-229.
    13. Zhao, Rongchao & Li, Weihua & Zhuge, Weilin & Zhang, Yangjun & Yin, Yong, 2017. "Numerical study on steam injection in a turbocompound diesel engine for waste heat recovery," Applied Energy, Elsevier, vol. 185(P1), pages 506-518.
    14. Maria Elena Diego & Muhammad Akram & Jean‐Michel Bellas & Karen N. Finney & Mohamed Pourkashanian, 2017. "Making gas‐CCS a commercial reality: The challenges of scaling up," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 7(5), pages 778-801, October.
    15. De Paepe, Ward & Delattin, Frank & Bram, Svend & De Ruyck, Jacques, 2013. "Water injection in a micro gas turbine – Assessment of the performance using a black box method," Applied Energy, Elsevier, vol. 112(C), pages 1291-1302.
    16. Zhu, Guangya & Chow, T.T. & Fong, K.F. & Lee, C.K., 2019. "Comparative study on humidified gas turbine cycles with different air saturator designs," Applied Energy, Elsevier, vol. 254(C).
    17. Kotowicz, Janusz & Brzęczek, Mateusz & Job, Marcin, 2018. "The thermodynamic and economic characteristics of the modern combined cycle power plant with gas turbine steam cooling," Energy, Elsevier, vol. 164(C), pages 359-376.
    18. Zhang, Qing & He, Ming & Wang, Yuzhang & Weng, Shilie, 2020. "Experimental analysis of the air humidification process for humid air turbine cycle using a two-phase measurement system," Applied Energy, Elsevier, vol. 279(C).
    19. Kayadelen, Hasan Kayhan & Ust, Yasin, 2017. "Thermodynamic, environmental and economic performance optimization of simple, regenerative, STIG and RSTIG gas turbine cycles," Energy, Elsevier, vol. 121(C), pages 751-771.
    20. Chacartegui, R. & Blanco, M.J. & Muñoz de Escalona, J.M. & Sánchez, D. & Sánchez, T., 2013. "Performance assessment of Molten Carbonate Fuel Cell–Humid Air Turbine hybrid systems," Applied Energy, Elsevier, vol. 102(C), pages 687-699.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:222:y:2021:i:c:s0360544221002309. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.