IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v279y2020ics0306261920313623.html
   My bibliography  Save this article

Experimental analysis of the air humidification process for humid air turbine cycle using a two-phase measurement system

Author

Listed:
  • Zhang, Qing
  • He, Ming
  • Wang, Yuzhang
  • Weng, Shilie

Abstract

The humid air turbine (HAT) cycle utilizes the low-temperature heat from the gas turbine exhaust to humidify the air, thereby increasing the specific output work. The air humidification process has a significant impact on gas turbine efficiency. So far, there is still a lack of reliable experimental data from gas-liquid two-phase flow, which limits the in-depth study of the air humidification process. In this work, the new multi-point gas–liquid two-phase temperature and relative humidity measurement system suitable for countercurrent pressurized humidifier is re-designed, the temperature and relative humidity distributions of humid air and the water temperature distribution are obtained along the height of humidifier. The effects of the water–air ratio and inlet water temperature on the humidification process are thoroughly investigated. The water–air ratio has little effect on the outlet air temperature, and it has a significant effect on the air and water temperature in the packing segment, and the relative humidity and absolute humidity increase as the water–air ratio increases. The outlet air temperature and water temperature increase as the inlet water temperature improves. The sooner the air reaches saturation and the absolute humidity increases more significantly at higher inlet water temperature. Vapor condensation occurs at the interface during the humidification process. Besides, the outlet water temperature can be cooled to be lower than the wet bulb temperature of the inlet air, but always higher than the dew point temperature of the inlet air. The measurement data provide an experimental basis for studying the heat and mass transfer inside the humidifier.

Suggested Citation

  • Zhang, Qing & He, Ming & Wang, Yuzhang & Weng, Shilie, 2020. "Experimental analysis of the air humidification process for humid air turbine cycle using a two-phase measurement system," Applied Energy, Elsevier, vol. 279(C).
  • Handle: RePEc:eee:appene:v:279:y:2020:i:c:s0306261920313623
    DOI: 10.1016/j.apenergy.2020.115892
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261920313623
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2020.115892?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Poullikkas, Andreas, 2007. "Implementation of distributed generation technologies in isolated power systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 11(1), pages 30-56, January.
    2. Zadpoor, Amir Abbas & Golshan, Ali Hamedani, 2006. "Performance improvement of a gas turbine cycle by using a desiccant-based evaporative cooling system," Energy, Elsevier, vol. 31(14), pages 2652-2664.
    3. Zhu, Guangya & Chow, T.T. & Fong, K.F. & Lee, C.K., 2019. "Comparative study on humidified gas turbine cycles with different air saturator designs," Applied Energy, Elsevier, vol. 254(C).
    4. De Paepe, W. & Contino, F. & Delattin, F. & Bram, S. & De Ruyck, J., 2014. "New concept of spray saturation tower for micro Humid Air Turbine applications," Applied Energy, Elsevier, vol. 130(C), pages 723-737.
    5. Jonsson, Maria & Yan, Jinyue, 2005. "Humidified gas turbines—a review of proposed and implemented cycles," Energy, Elsevier, vol. 30(7), pages 1013-1078.
    6. De Paepe, Ward & Montero Carrero, Marina & Bram, Svend & Contino, Francesco & Parente, Alessandro, 2017. "Waste heat recovery optimization in micro gas turbine applications using advanced humidified gas turbine cycle concepts," Applied Energy, Elsevier, vol. 207(C), pages 218-229.
    7. Poullikkas, Andreas, 2005. "An overview of current and future sustainable gas turbine technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 9(5), pages 409-443, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Yuzhang & Zhang, Qing & Li, Yixing & He, Ming & Weng, Shilie, 2022. "Research on the effectiveness of the key components in the HAT cycle," Applied Energy, Elsevier, vol. 306(PB).
    2. Zhang, Qing & Wang, Yuzhang & Jiang, Jiangjun & Weng, Shilie & Cao, Xiuling, 2022. "Coupling effect of key parameters of heat recovery components on the HAT cycle performance," Energy, Elsevier, vol. 238(PC).
    3. Song, Yanli & Chen, Xin & Zhou, Jialong & Du, Tao & Xie, Feng & Guo, Haifeng, 2022. "Research on performance of passive heat supply tower based on the back propagation neural network," Energy, Elsevier, vol. 250(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Saghafifar, Mohammad & Gadalla, Mohamed, 2015. "Analysis of Maisotsenko open gas turbine power cycle with a detailed air saturator model," Applied Energy, Elsevier, vol. 149(C), pages 338-353.
    2. Zhang, Qing & He, Ming & Wang, Yuzhang & Weng, Shilie, 2020. "Analysis of air humidification process for humid air turbine cycle with a detailed air humidifier model," Applied Energy, Elsevier, vol. 279(C).
    3. Wang, Yuzhang & Zhang, Qing & Li, Yixing & He, Ming & Weng, Shilie, 2022. "Research on the effectiveness of the key components in the HAT cycle," Applied Energy, Elsevier, vol. 306(PB).
    4. Zhang, Qing & Wang, Yuzhang & Jiang, Jiangjun & Weng, Shilie & Cao, Xiuling, 2022. "Coupling effect of key parameters of heat recovery components on the HAT cycle performance," Energy, Elsevier, vol. 238(PC).
    5. Zhu, Guangya & Chow, T.T. & Fong, K.F. & Lee, C.K., 2019. "Comparative study on humidified gas turbine cycles with different air saturator designs," Applied Energy, Elsevier, vol. 254(C).
    6. Saghafifar, Mohammad & Gadalla, Mohamed, 2015. "Innovative inlet air cooling technology for gas turbine power plants using integrated solid desiccant and Maisotsenko cooler," Energy, Elsevier, vol. 87(C), pages 663-677.
    7. Montero Carrero, Marina & De Paepe, Ward & Bram, Svend & Parente, Alessandro & Contino, Francesco, 2017. "Does humidification improve the micro Gas Turbine cycle? Thermodynamic assessment based on Sankey and Grassmann diagrams," Applied Energy, Elsevier, vol. 204(C), pages 1163-1171.
    8. Shen, Yazhou & Nazir, Shareq Mohd & Zhang, Kai & Duwig, Christophe, 2023. "Waste heat recovery optimization in ammonia-based gas turbine applications," Energy, Elsevier, vol. 280(C).
    9. Anwar Hamdan Al Assaf & Abdulkarem Amhamed & Odi Fawwaz Alrebei, 2022. "State of the Art in Humidified Gas Turbine Configurations," Energies, MDPI, vol. 15(24), pages 1-32, December.
    10. Mahmood, Muhammad H. & Sultan, Muhammad & Miyazaki, Takahiko & Koyama, Shigeru & Maisotsenko, Valeriy S., 2016. "Overview of the Maisotsenko cycle – A way towards dew point evaporative cooling," Renewable and Sustainable Energy Reviews, Elsevier, vol. 66(C), pages 537-555.
    11. S. Hamed Fatemi Alavi & Amirreza Javaherian & S. M. S. Mahmoudi & Saeed Soltani & Marc A. Rosen, 2023. "Coupling a Gas Turbine Bottoming Cycle Using CO 2 as the Working Fluid with a Gas Cycle: Exergy Analysis Considering Combustion Chamber Steam Injection," Clean Technol., MDPI, vol. 5(3), pages 1-25, September.
    12. Chacartegui, R. & Sánchez, D. & Muñoz, J.M. & Sánchez, T., 2009. "Alternative ORC bottoming cycles FOR combined cycle power plants," Applied Energy, Elsevier, vol. 86(10), pages 2162-2170, October.
    13. Mahdi Deymi-Dashtebayaz & Parisa Kazemiani-Najafabad, 2019. "Energy, Exergy, Economic, and Environmental analysis for various inlet air cooling methods on Shahid Hashemi-Nezhad gas turbines refinery," Energy & Environment, , vol. 30(3), pages 481-498, May.
    14. Taimoor, Aqeel Ahmad & Muhammad, Ayyaz & Saleem, Waqas & Zain-ul-abdein, Muhammad, 2016. "Humidified exhaust recirculation for efficient combined cycle gas turbines," Energy, Elsevier, vol. 106(C), pages 356-366.
    15. Xu, Zhen & Lu, Yuan & Wang, Bo & Zhao, Lifeng & Xiao, Yunhan, 2021. "Experimental study on the off-design performances of a micro humid air turbine cycle: Thermodynamics, emissions and heat exchange," Energy, Elsevier, vol. 219(C).
    16. De Paepe, Ward & Montero Carrero, Marina & Bram, Svend & Contino, Francesco & Parente, Alessandro, 2017. "Waste heat recovery optimization in micro gas turbine applications using advanced humidified gas turbine cycle concepts," Applied Energy, Elsevier, vol. 207(C), pages 218-229.
    17. Farzaneh-Gord, Mahmood & Deymi-Dashtebayaz, Mahdi, 2011. "Effect of various inlet air cooling methods on gas turbine performance," Energy, Elsevier, vol. 36(2), pages 1196-1205.
    18. Kayadelen, Hasan Kayhan & Ust, Yasin & Bashan, Veysi, 2021. "Thermodynamic performance analysis of state of the art gas turbine cycles with inter-stage turbine reheat and steam injection," Energy, Elsevier, vol. 222(C).
    19. De Paepe, Ward & Pappa, Alessio & Montero Carrero, Marina & Bricteux, Laurent & Contino, Francesco, 2020. "Reducing waste heat to the minimum: Thermodynamic assessment of the M-power cycle concept applied to micro Gas Turbines," Applied Energy, Elsevier, vol. 279(C).
    20. Ehyaei, M.A. & Mozafari, A. & Alibiglou, M.H., 2011. "Exergy, economic & environmental (3E) analysis of inlet fogging for gas turbine power plant," Energy, Elsevier, vol. 36(12), pages 6851-6861.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:279:y:2020:i:c:s0306261920313623. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.