IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v121y2017icp751-771.html
   My bibliography  Save this article

Thermodynamic, environmental and economic performance optimization of simple, regenerative, STIG and RSTIG gas turbine cycles

Author

Listed:
  • Kayadelen, Hasan Kayhan
  • Ust, Yasin

Abstract

Regeneration and steam injection are both well proven as well as promising modifications which can boost power, increase thermal efficiency, part load performance and limit NOx emissions. However, their benefits are still largely unexploited. To investigate these modifications, a comprehensive but practical model is established as an essential improvement on the air standard models. Our multipronged modeling approach enables simultaneous monitoring and optimization of thermodynamic, economic and environmental performance. Additionally, it provides a more accurate analysis by using specifically calculated thermodynamic properties, precisely calculated adiabatic flame temperature, a realistic definition of regenerator effectiveness coefficient and updated cost parameters. Simulating this improved model, a detailed parametrical analysis of steam injected and regenerative gas turbine cycles is performed for varying pressure, steam injection and equivalence ratios. Optimal operating parameters are investigated considering the state of the art cycle parameters and component efficiencies along with non-equilibrium NOx and CO emissions. Contradictory traits of steam injection and regeneration as well as their combinations are presented and comparatively discussed. Conditions of maximum economic profit are demonstrated regarding the up-to-date equipment cost data and escalations in fuel prices. We suggest, this study will contribute to optimization of novel and future gas turbine designs and applications.

Suggested Citation

  • Kayadelen, Hasan Kayhan & Ust, Yasin, 2017. "Thermodynamic, environmental and economic performance optimization of simple, regenerative, STIG and RSTIG gas turbine cycles," Energy, Elsevier, vol. 121(C), pages 751-771.
  • Handle: RePEc:eee:energy:v:121:y:2017:i:c:p:751-771
    DOI: 10.1016/j.energy.2017.01.060
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544217300609
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2017.01.060?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Valero, Antonio & Lozano, Miguel A. & Serra, Luis & Tsatsaronis, George & Pisa, Javier & Frangopoulos, Christos & von Spakovsky, Michael R., 1994. "CGAM problem: Definition and conventional solution," Energy, Elsevier, vol. 19(3), pages 279-286.
    2. Athari, Hassan & Soltani, Saeed & Rosen, Marc A. & Gavifekr, Masood Kordoghli & Morosuk, Tatiana, 2016. "Exergoeconomic study of gas turbine steam injection and combined power cycles using fog inlet cooling and biomass fuel," Renewable Energy, Elsevier, vol. 96(PA), pages 715-726.
    3. Poullikkas, Andreas, 2005. "An overview of current and future sustainable gas turbine technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 9(5), pages 409-443, October.
    4. Nishida, Kousuke & Takagi, Toshimi & Kinoshita, Shinichi, 2005. "Regenerative steam-injection gas-turbine systems," Applied Energy, Elsevier, vol. 81(3), pages 231-246, July.
    5. Athari, Hassan & Soltani, Saeed & Rosen, Marc A. & Seyed Mahmoudi, Seyed Mohammad & Morosuk, Tatiana, 2016. "Gas turbine steam injection and combined power cycles using fog inlet cooling and biomass fuel: A thermodynamic assessment," Renewable Energy, Elsevier, vol. 92(C), pages 95-103.
    6. Frangopoulos, Christos A., 1994. "Application of the thermoeconomic functional approach to the CGAM problem," Energy, Elsevier, vol. 19(3), pages 323-342.
    7. Erbay, L. Berrin & Göktun, Selahattin & Yavuz, Hasbi, 2001. "Optimal design of the regenerative gas turbine engine with isothermal heat addition," Applied Energy, Elsevier, vol. 68(3), pages 249-264, March.
    8. Lee, Jong Jun & Kang, Do Won & Kim, Tong Seop, 2011. "Development of a gas turbine performance analysis program and its application," Energy, Elsevier, vol. 36(8), pages 5274-5285.
    9. Lee, Jong Jun & Jeon, Mu Sung & Kim, Tong Seop, 2010. "The influence of water and steam injection on the performance of a recuperated cycle microturbine for combined heat and power application," Applied Energy, Elsevier, vol. 87(4), pages 1307-1316, April.
    10. Ahmadi, Pouria & Dincer, Ibrahim, 2010. "Exergoenvironmental analysis and optimization of a cogeneration plant system using Multimodal Genetic Algorithm (MGA)," Energy, Elsevier, vol. 35(12), pages 5161-5172.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhu, Guangya & Chow, T.T. & Fong, K.F. & Lee, C.K., 2019. "Comparative study on humidified gas turbine cycles with different air saturator designs," Applied Energy, Elsevier, vol. 254(C).
    2. Zhang, Qing & Wang, Yuzhang & Jiang, Jiangjun & Weng, Shilie & Cao, Xiuling, 2022. "Coupling effect of key parameters of heat recovery components on the HAT cycle performance," Energy, Elsevier, vol. 238(PC).
    3. Kayadelen, Hasan Kayhan & Ust, Yasin & Bashan, Veysi, 2021. "Thermodynamic performance analysis of state of the art gas turbine cycles with inter-stage turbine reheat and steam injection," Energy, Elsevier, vol. 222(C).
    4. Ma, Yujia & Liu, Jinfu & Zhu, Linhai & Li, Qi & Guo, Yaqiong & Liu, Huanpeng & Yu, Daren, 2022. "Multi-objective performance optimization and control for gas turbine Part-load operation Energy-saving and NOx emission reduction," Applied Energy, Elsevier, vol. 320(C).
    5. Kotowicz, Janusz & Brzęczek, Mateusz & Job, Marcin, 2018. "The thermodynamic and economic characteristics of the modern combined cycle power plant with gas turbine steam cooling," Energy, Elsevier, vol. 164(C), pages 359-376.
    6. Safiyullah, F. & Sulaiman, S.A. & Naz, M.Y. & Jasmani, M.S. & Ghazali, S.M.A., 2018. "Prediction on performance degradation and maintenance of centrifugal gas compressors using genetic programming," Energy, Elsevier, vol. 158(C), pages 485-494.
    7. Amiri Rad, Ehsan & Kazemiani-Najafabadi, Parisa, 2017. "Thermo-environmental and economic analyses of an integrated heat recovery steam-injected gas turbine," Energy, Elsevier, vol. 141(C), pages 1940-1954.
    8. Mohammadpour, Mohammadreza & Houshfar, Ehsan & Ashjaee, Mehdi & Mohammadpour, Amirreza, 2021. "Energy and exergy analysis of biogas fired regenerative gas turbine cycle with CO2 recirculation for oxy-fuel combustion power generation," Energy, Elsevier, vol. 220(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kayadelen, Hasan Kayhan, 2018. "A multi-featured model for estimation of thermodynamic properties, adiabatic flame temperature and equilibrium combustion products of fuels, fuel blends, surrogates and fuel additives," Energy, Elsevier, vol. 143(C), pages 241-256.
    2. Pashchenko, Dmitry & Mustafin, Ravil & Karpilov, Igor, 2022. "Thermochemical recuperation by steam methane reforming as an efficient alternative to steam injection in the gas turbines," Energy, Elsevier, vol. 258(C).
    3. Huang, Zhifeng & Yang, Cheng & Yang, Haixia & Ma, Xiaoqian, 2018. "Off-design heating/power flexibility for steam injected gas turbine based CCHP considering variable geometry operation," Energy, Elsevier, vol. 165(PA), pages 1048-1060.
    4. Sahu, Mithilesh Kumar & Sanjay,, 2017. "Comparative exergoeconomics of power utilities: Air-cooled gas turbine cycle and combined cycle configurations," Energy, Elsevier, vol. 139(C), pages 42-51.
    5. Nondy, J. & Gogoi, T.K., 2021. "Performance comparison of multi-objective evolutionary algorithms for exergetic and exergoenvironomic optimization of a benchmark combined heat and power system," Energy, Elsevier, vol. 233(C).
    6. Bargos, Fabiano Fernandes & Lamas, Wendell de Queiróz & Bilato, Gabriel Adam, 2018. "Computational tools and operational research for optimal design of co-generation systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 93(C), pages 507-516.
    7. Anvari, Simin & Szlęk, Andrzej & Arteconi, Alessia & Desideri, Umberto & Rosen, Marc A., 2023. "Comparative study of steam injection modes for a proposed biomass-driven cogeneration cycle: Performance improvement and CO2 emission reduction," Applied Energy, Elsevier, vol. 329(C).
    8. Nadir, Mahmoud & Ghenaiet, Adel, 2017. "Steam turbine injection generator performance estimation considering turbine blade cooling," Energy, Elsevier, vol. 132(C), pages 248-256.
    9. Mokhtari, Hamid & Ahmadisedigh, Hossein & Ameri, Mohammad, 2017. "The optimal design and 4E analysis of double pressure HRSG utilizing steam injection for Damavand power plant," Energy, Elsevier, vol. 118(C), pages 399-413.
    10. Saghafifar, Mohammad & Gadalla, Mohamed, 2016. "Thermo-economic analysis of air bottoming cycle hybridization using heliostat field collector: A comparative analysis," Energy, Elsevier, vol. 112(C), pages 698-714.
    11. Ma, Hongting & Du, Na & Zhang, Zeyu & Lyu, Fan & Deng, Na & Li, Cong & Yu, Shaojie, 2017. "Assessment of the optimum operation conditions on a heat pipe heat exchanger for waste heat recovery in steel industry," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 50-60.
    12. Abusoglu, Aysegul & Kanoglu, Mehmet, 2009. "Exergoeconomic analysis and optimization of combined heat and power production: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(9), pages 2295-2308, December.
    13. Nami, Hossein & Anvari-Moghaddam, Amjad, 2020. "Geothermal driven micro-CCHP for domestic application – Exergy, economic and sustainability analysis," Energy, Elsevier, vol. 207(C).
    14. Karaali, Rabi & Öztürk, İlhan Tekin, 2015. "Thermoeconomic optimization of gas turbine cogeneration plants," Energy, Elsevier, vol. 80(C), pages 474-485.
    15. Lamas, Wendell de Queiróz, 2017. "Exergo-economic analysis of a typical wind power system," Energy, Elsevier, vol. 140(P1), pages 1173-1181.
    16. Sadeghi, Mohsen & Chitsaz, Ata & Marivani, Parisa & Yari, Mortaza & Mahmoudi, S.M.S., 2020. "Effects of thermophysical and thermochemical recuperation on the performance of combined gas turbine and organic rankine cycle power generation system: Thermoeconomic comparison and multi-objective op," Energy, Elsevier, vol. 210(C).
    17. Aghabalazadeh, Mohammad & Neshat, Elaheh, 2024. "Proposal and optimization of a novel biomass-based tri-generation system using energy, exergy and exergoeconomic analyses and design of experiments method," Energy, Elsevier, vol. 288(C).
    18. Ramin Ghiami Sardroud & Amirreza Javaherian & Seyed Mohammad Seyed Mahmoudi & Mehri Akbari Kordlar & Marc A. Rosen, 2023. "Proposal and Comprehensive Analysis of a Novel Combined Plant with Gas Turbine and Organic Flash Cycles: An Application of Multi-Objective Optimization," Sustainability, MDPI, vol. 15(19), pages 1-40, September.
    19. Kayadelen, Hasan Kayhan & Ust, Yasin & Bashan, Veysi, 2021. "Thermodynamic performance analysis of state of the art gas turbine cycles with inter-stage turbine reheat and steam injection," Energy, Elsevier, vol. 222(C).
    20. Ferreira, Ana C.M. & Nunes, Manuel L. & Teixeira, Senhorinha F.C.F. & Leão, Celina P. & Silva, Ângela M. & Teixeira, José C.F. & Martins, Luís A.S.B., 2012. "An economic perspective on the optimisation of a small-scale cogeneration system for the Portuguese scenario," Energy, Elsevier, vol. 45(1), pages 436-444.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:121:y:2017:i:c:p:751-771. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.