IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v305y2024ics0360544224019698.html
   My bibliography  Save this article

Degradation performance rapid prediction and multi-objective operation optimization of gas turbine blades

Author

Listed:
  • Shi, Dongbo
  • Liao, Guangqing
  • Meng, Yue
  • Zhang, Di
  • Xie, Yonghui

Abstract

The performance degradation of high-temperature blades will affect the safety and efficiency of operation. In response to issues such as ignoring strength characteristics, slow degradation performance prediction, insufficient applicability and accuracy of traditional proxy models, and long operation optimization cycle, a degradation performance prediction model of turbine blades based on the back propagation neural network is established in this research. Furthermore, the efficiency-stress multi-objective operation optimization method based on genetic algorithm is proposed. The results show that the R-square value of the degradation performance neural network prediction model is greater than 0.9 for predicting characteristic parameters. The prediction speed is improved by 104 orders of magnitude compared to the traditional computational fluid dynamics method. The influence mechanisms of turbine outlet flow rate, cooling gas inlet total temperature, and cooling gas flow rate on the degradation performance are revealed. Under fouling extreme conditions and corrosion/wear extreme conditions, the operating parameters of turbine blades are optimized. The maximum values of the efficiency improvement, power increase and maximum von Mises stress reduction are 0.74 %, 2.13 MW and 43 MPa, respectively. This study can provide an effective and novel method for real-time degradation performance prediction and rapid operating condition optimization of turbine blades.

Suggested Citation

  • Shi, Dongbo & Liao, Guangqing & Meng, Yue & Zhang, Di & Xie, Yonghui, 2024. "Degradation performance rapid prediction and multi-objective operation optimization of gas turbine blades," Energy, Elsevier, vol. 305(C).
  • Handle: RePEc:eee:energy:v:305:y:2024:i:c:s0360544224019698
    DOI: 10.1016/j.energy.2024.132195
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224019698
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.132195?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chen, Yu-Zhi & Zhao, Xu-Dong & Xiang, Heng-Chao & Tsoutsanis, Elias, 2021. "A sequential model-based approach for gas turbine performance diagnostics," Energy, Elsevier, vol. 220(C).
    2. Wang, Yuqi & Liu, Tianyuan & Meng, Yue & Zhang, Di & Xie, Yonghui, 2022. "Integrated optimization for design and operation of turbomachinery in a solar-based Brayton cycle based on deep learning techniques," Energy, Elsevier, vol. 252(C).
    3. Liu, Zuming & Karimi, Iftekhar A., 2020. "Gas turbine performance prediction via machine learning," Energy, Elsevier, vol. 192(C).
    4. Cheng, Xianda & Zheng, Haoran & Yang, Qian & Zheng, Peiying & Dong, Wei, 2023. "Surrogate model-based real-time gas path fault diagnosis for gas turbines under transient conditions," Energy, Elsevier, vol. 278(PA).
    5. Ram, Krishnil R. & Lal, Sunil P. & Ahmed, M. Rafiuddin, 2019. "Design and optimization of airfoils and a 20 kW wind turbine using multi-objective genetic algorithm and HARP_Opt code," Renewable Energy, Elsevier, vol. 144(C), pages 56-67.
    6. Kayadelen, Hasan Kayhan & Ust, Yasin & Bashan, Veysi, 2021. "Thermodynamic performance analysis of state of the art gas turbine cycles with inter-stage turbine reheat and steam injection," Energy, Elsevier, vol. 222(C).
    7. Yonezawa, Koichi & Nakai, Genki & Takayasu, Masahiro & Sugiyama, Kazuyasu & Sugita, Katsuhiko & Umezawa, Shuichi & Ohmori, Shuichi, 2021. "Influence of blade corrosion on aerodynamic characteristics of a gas turbine," Energy, Elsevier, vol. 230(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Du, Qiuwan & Li, Yunzhu & Yang, Like & Liu, Tianyuan & Zhang, Di & Xie, Yonghui, 2022. "Performance prediction and design optimization of turbine blade profile with deep learning method," Energy, Elsevier, vol. 254(PA).
    2. Park, Yeseul & Choi, Minsung & Choi, Gyungmin, 2022. "Fault detection of industrial large-scale gas turbine for fuel distribution characteristics in start-up procedure using artificial neural network method," Energy, Elsevier, vol. 251(C).
    3. Jiang, Chiju & Zhang, Weihao & Li, Ya & Li, Lele & Wang, Yufan & Huang, Dongming, 2023. "Multi-scale Pix2Pix network for high-fidelity prediction of adiabatic cooling effectiveness in turbine cascade," Energy, Elsevier, vol. 265(C).
    4. Mauro, S. & Lanzafame, R. & Messina, M. & Brusca, S., 2023. "On the importance of the root-to-hub adapter effects on HAWT performance: A CFD-BEM numerical investigation," Energy, Elsevier, vol. 275(C).
    5. Mingliang Bai & Jinfu Liu & Yujia Ma & Xinyu Zhao & Zhenhua Long & Daren Yu, 2020. "Long Short-Term Memory Network-Based Normal Pattern Group for Fault Detection of Three-Shaft Marine Gas Turbine," Energies, MDPI, vol. 14(1), pages 1-22, December.
    6. Waqar Muhammad Ashraf & Ghulam Moeen Uddin & Syed Muhammad Arafat & Sher Afghan & Ahmad Hassan Kamal & Muhammad Asim & Muhammad Haider Khan & Muhammad Waqas Rafique & Uwe Naumann & Sajawal Gul Niazi &, 2020. "Optimization of a 660 MW e Supercritical Power Plant Performance—A Case of Industry 4.0 in the Data-Driven Operational Management Part 1. Thermal Efficiency," Energies, MDPI, vol. 13(21), pages 1-33, October.
    7. Cheng, Xianda & Zheng, Haoran & Dong, Wei & Yang, Xuesen, 2023. "Performance prediction of marine intercooled cycle gas turbine based on expanded similarity parameters," Energy, Elsevier, vol. 265(C).
    8. S. Hamed Fatemi Alavi & Amirreza Javaherian & S. M. S. Mahmoudi & Saeed Soltani & Marc A. Rosen, 2023. "Coupling a Gas Turbine Bottoming Cycle Using CO 2 as the Working Fluid with a Gas Cycle: Exergy Analysis Considering Combustion Chamber Steam Injection," Clean Technol., MDPI, vol. 5(3), pages 1-25, September.
    9. Chen, Yu-Zhi & Tsoutsanis, Elias & Xiang, Heng-Chao & Li, Yi-Guang & Zhao, Jun-Jie, 2022. "A dynamic performance diagnostic method applied to hydrogen powered aero engines operating under transient conditions," Applied Energy, Elsevier, vol. 317(C).
    10. Wang, Yuqi & Du, Qiuwan & Li, Yunzhu & Zhang, Di & Xie, Yonghui, 2022. "Field reconstruction and off-design performance prediction of turbomachinery in energy systems based on deep learning techniques," Energy, Elsevier, vol. 238(PB).
    11. Kilic, Ugur & Yalin, Gorkem & Cam, Omer, 2023. "Digital twin for Electronic Centralized Aircraft Monitoring by machine learning algorithms," Energy, Elsevier, vol. 283(C).
    12. Li, Jinxing & Liu, Tianyuan & Zhu, Guangya & Li, Yunzhu & Xie, Yonghui, 2023. "Uncertainty quantification and aerodynamic robust optimization of turbomachinery based on graph learning methods," Energy, Elsevier, vol. 273(C).
    13. Li, Yunzhu & Liu, Tianyuan & Wang, Yuqi & Xie, Yonghui, 2022. "Deep learning based real-time energy extraction system modeling for flapping foil," Energy, Elsevier, vol. 246(C).
    14. Waqar Muhammad Ashraf & Ghulam Moeen Uddin & Muhammad Farooq & Fahid Riaz & Hassan Afroze Ahmad & Ahmad Hassan Kamal & Saqib Anwar & Ahmed M. El-Sherbeeny & Muhammad Haider Khan & Noman Hafeez & Arman, 2021. "Construction of Operational Data-Driven Power Curve of a Generator by Industry 4.0 Data Analytics," Energies, MDPI, vol. 14(5), pages 1-18, February.
    15. Cheng, Xianda & Zheng, Haoran & Yang, Qian & Zheng, Peiying & Dong, Wei, 2023. "Surrogate model-based real-time gas path fault diagnosis for gas turbines under transient conditions," Energy, Elsevier, vol. 278(PA).
    16. Thanh Dam Mai & Jaiyoung Ryu, 2021. "Effects of Damaged Rotor Blades on the Aerodynamic Behavior and Heat-Transfer Characteristics of High-Pressure Gas Turbines," Mathematics, MDPI, vol. 9(6), pages 1-21, March.
    17. Masood, Zahid & Khan, Shahroz & Qian, Li, 2021. "Machine learning-based surrogate model for accelerating simulation-driven optimisation of hydropower Kaplan turbine," Renewable Energy, Elsevier, vol. 173(C), pages 827-848.
    18. Vedran Mrzljak & Igor Poljak & Maro Jelić & Jasna Prpić-Oršić, 2023. "Thermodynamic Analysis and Improvement Potential of Helium Closed Cycle Gas Turbine Power Plant at Four Loads," Energies, MDPI, vol. 16(15), pages 1-26, July.
    19. Henda Zorgani Agrebi & Naourez Benhadj & Mohamed Chaieb & Farooq Sher & Roua Amami & Rafik Neji & Neil Mansfield, 2021. "Integrated Optimal Design of Permanent Magnet Synchronous Generator for Smart Wind Turbine Using Genetic Algorithm," Energies, MDPI, vol. 14(15), pages 1-20, July.
    20. Hu, Kaibin & Wang, Xiaobo & Zhong, Shengquan & Lu, Cheng & Yu, Bocheng & Yang, Li & Rao, Yu, 2024. "Optimization of turbine blade trailing edge cooling using self-organized geometries and multi-objective approaches," Energy, Elsevier, vol. 289(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:305:y:2024:i:c:s0360544224019698. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.