IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v247y2022ics0360544222004339.html
   My bibliography  Save this article

Precise modeling of PEM fuel cell using a novel Enhanced Transient Search Optimization algorithm

Author

Listed:
  • Hasanien, Hany M.
  • Shaheen, Mohamed A.M.
  • Turky, Rania A.
  • Qais, Mohammed H.
  • Alghuwainem, Saad
  • Kamel, Salah
  • Tostado-Véliz, Marcos
  • Jurado, Francisco

Abstract

This paper introduces a novel enhancement to the Transient Search Optimization (TSO) algorithm to estimate an accurate electrical model of the proton exchange membrane fuel cell (PEMFC). The PEMEFC model is a non-linear model that includes seven unknown variables which cannot be calculated analytically. The TSO is enhanced by inserting two new factors, the Levy function and the Weibull distribution function. The proposed enhanced Transient Search Optimization (ETSO) and TSO algorithms are applied to estimate the seven variables by minimizing the sum of the squared errors (SSEs) between the measured and calculated voltages. The error is defined as the difference between the measured and the calculated output voltage of the PEMFC. Three different commercial types of PEMFCs are modeled: i) Ballard, Mark V 5 kW, ii) Horizon H-12, and iii) 6 kW Nedstack PS6 stacks PEMFC. The estimated seven variables and the minimum SSE of electrical PEMFCs using ETSO and TSO algorithms are compared with the results obtained by using other optimization algorithms like whale optimization algorithm, genetic algorithm, neural network algorithm and others. The results obtained by the ETSO are better than that obtained by TSO by more than 10% and this percentage increases with other algorithms. The accuracy of the proposed PEMFC model is verified by comparing the estimated V–I and P–I characteristics with the measured data. The effectiveness of the proposed ETSO based model is verified by an investigation of sensitivity analysis for design variables and the robustness of the ETSO algorithm via the statistical analysis and the parametric t-test.

Suggested Citation

  • Hasanien, Hany M. & Shaheen, Mohamed A.M. & Turky, Rania A. & Qais, Mohammed H. & Alghuwainem, Saad & Kamel, Salah & Tostado-Véliz, Marcos & Jurado, Francisco, 2022. "Precise modeling of PEM fuel cell using a novel Enhanced Transient Search Optimization algorithm," Energy, Elsevier, vol. 247(C).
  • Handle: RePEc:eee:energy:v:247:y:2022:i:c:s0360544222004339
    DOI: 10.1016/j.energy.2022.123530
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544222004339
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2022.123530?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Priya, K. & Sathishkumar, K. & Rajasekar, N., 2018. "A comprehensive review on parameter estimation techniques for Proton Exchange Membrane fuel cell modelling," Renewable and Sustainable Energy Reviews, Elsevier, vol. 93(C), pages 121-144.
    2. Fathy, Ahmed & Elaziz, Mohamed Abd & Alharbi, Abdullah G., 2020. "A novel approach based on hybrid vortex search algorithm and differential evolution for identifying the optimal parameters of PEM fuel cell," Renewable Energy, Elsevier, vol. 146(C), pages 1833-1845.
    3. Yang, Bo & Li, Danyang & Zeng, Chunyuan & Chen, Yijun & Guo, Zhengxun & Wang, Jingbo & Shu, Hongchun & Yu, Tao & Zhu, Jiawei, 2021. "Parameter extraction of PEMFC via Bayesian regularization neural network based meta-heuristic algorithms," Energy, Elsevier, vol. 228(C).
    4. Tanveer, Waqas Hassan & Rezk, Hegazy & Nassef, Ahmed & Abdelkareem, Mohammad Ali & Kolosz, Ben & Karuppasamy, K. & Aslam, Jawad & Gilani, Syed Omer, 2020. "Improving fuel cell performance via optimal parameters identification through fuzzy logic based-modeling and optimization," Energy, Elsevier, vol. 204(C).
    5. Samuel Raafat Fahim & Hany M. Hasanien & Rania A. Turky & Abdulaziz Alkuhayli & Abdullrahman A. Al-Shamma’a & Abdullah M. Noman & Marcos Tostado-Véliz & Francisco Jurado, 2021. "Parameter Identification of Proton Exchange Membrane Fuel Cell Based on Hunger Games Search Algorithm," Energies, MDPI, vol. 14(16), pages 1-21, August.
    6. Alijanpour sheshpoli, Mohamad & Mousavi Ajarostaghi, Seyed Soheil & Delavar, Mojtaba Aghajani, 2018. "Waste heat recovery from a 1180 kW proton exchange membrane fuel cell (PEMFC) system by Recuperative organic Rankine cycle (RORC)," Energy, Elsevier, vol. 157(C), pages 353-366.
    7. Kandidayeni, M. & Macias, A. & Khalatbarisoltani, A. & Boulon, L. & Kelouwani, S., 2019. "Benchmark of proton exchange membrane fuel cell parameters extraction with metaheuristic optimization algorithms," Energy, Elsevier, vol. 183(C), pages 912-925.
    8. El-Fergany, Attia A., 2018. "Extracting optimal parameters of PEM fuel cells using Salp Swarm Optimizer," Renewable Energy, Elsevier, vol. 119(C), pages 641-648.
    9. Mehrpooya, Mehdi & Ansarinasab, Hojat & Mousavi, Seyed Ali, 2021. "Life cycle assessment and exergoeconomic analysis of the multi-generation system based on fuel cell for methanol, power, and heat production," Renewable Energy, Elsevier, vol. 172(C), pages 1314-1332.
    10. Lai, Xiaotian & Long, Rui & Liu, Zhichun & Liu, Wei, 2018. "A hybrid system using direct contact membrane distillation for water production to harvest waste heat from the proton exchange membrane fuel cell," Energy, Elsevier, vol. 147(C), pages 578-586.
    11. Seleem, Sameh I. & Hasanien, Hany M. & El-Fergany, Attia A., 2021. "Equilibrium optimizer for parameter extraction of a fuel cell dynamic model," Renewable Energy, Elsevier, vol. 169(C), pages 117-128.
    12. Qais, Mohammed H. & Hasanien, Hany M. & Alghuwainem, Saad, 2020. "Parameters extraction of three-diode photovoltaic model using computation and Harris Hawks optimization," Energy, Elsevier, vol. 195(C).
    13. Pan, Mingzhang & Li, Chao & Liao, Jinyang & Lei, Han & Pan, Chengjie & Meng, Xianpan & Huang, Haozhong, 2020. "Design and modeling of PEM fuel cell based on different flow fields," Energy, Elsevier, vol. 207(C).
    14. Abdel-Basset, Mohamed & Mohamed, Reda & El-Fergany, Attia & Chakrabortty, Ripon K. & Ryan, Michael J., 2021. "Adaptive and efficient optimization model for optimal parameters of proton exchange membrane fuel cells: A comprehensive analysis," Energy, Elsevier, vol. 233(C).
    15. Lin, Rui & Wang, Hong & Zhu, Yu, 2021. "Optimizing the structural design of cathode catalyst layer for PEM fuel cells for improving mass-specific power density," Energy, Elsevier, vol. 221(C).
    16. Ibrahim Alsaidan & Mohamed A. M. Shaheen & Hany M. Hasanien & Muhannad Alaraj & Abrar S. Alnafisah, 2021. "Proton Exchange Membrane Fuel Cells Modeling Using Chaos Game Optimization Technique," Sustainability, MDPI, vol. 13(14), pages 1-24, July.
    17. Ijaodola, O.S. & El- Hassan, Zaki & Ogungbemi, E. & Khatib, F.N. & Wilberforce, Tabbi & Thompson, James & Olabi, A.G., 2019. "Energy efficiency improvements by investigating the water flooding management on proton exchange membrane fuel cell (PEMFC)," Energy, Elsevier, vol. 179(C), pages 246-267.
    18. Ahmed M. Agwa & Attia A. El-Fergany & Gamal M. Sarhan, 2019. "Steady-State Modeling of Fuel Cells Based on Atom Search Optimizer," Energies, MDPI, vol. 12(10), pages 1-14, May.
    19. Mohamed A. M. Shaheen & Dalia Yousri & Ahmed Fathy & Hany M. Hasanien & Abdulaziz Alkuhayli & S. M. Muyeen, 2020. "A Novel Application of Improved Marine Predators Algorithm and Particle Swarm Optimization for Solving the ORPD Problem," Energies, MDPI, vol. 13(21), pages 1-23, October.
    20. Deng, Huiwen & Hu, Weihao & Cao, Di & Chen, Weirong & Huang, Qi & Chen, Zhe & Blaabjerg, Frede, 2022. "Degradation trajectories prognosis for PEM fuel cell systems based on Gaussian process regression," Energy, Elsevier, vol. 244(PA).
    21. Ajanovic, A. & Glatt, A. & Haas, R., 2021. "Prospects and impediments for hydrogen fuel cell buses," Energy, Elsevier, vol. 235(C).
    22. Olabi, A.G. & Wilberforce, Tabbi & Abdelkareem, Mohammad Ali, 2021. "Fuel cell application in the automotive industry and future perspective," Energy, Elsevier, vol. 214(C).
    23. Sun, Xianke & Wang, Gaoliang & Xu, Liuyang & Yuan, Honglei & Yousefi, Nasser, 2021. "Optimal estimation of the PEM fuel cells applying deep belief network optimized by improved archimedes optimization algorithm," Energy, Elsevier, vol. 237(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ghasabehi, Mehrdad & Ghanbari, Sina & Asadi, Mohammad Reza & Shams, Mehrzad & Kanani, Homayoon, 2024. "Optimization of baffle and tapering integration in the PEM fuel cell flow field employing artificial intelligence," Energy, Elsevier, vol. 302(C).
    2. Andrew J. Riad & Hany M. Hasanien & Rania A. Turky & Ahmed H. Yakout, 2023. "Identifying the PEM Fuel Cell Parameters Using Artificial Rabbits Optimization Algorithm," Sustainability, MDPI, vol. 15(5), pages 1-17, March.
    3. Pei, Pucheng & Meng, Yining & Chen, Dongfang & Ren, Peng & Wang, Mingkai & Wang, Xizhong, 2023. "Lifetime prediction method of proton exchange membrane fuel cells based on current degradation law," Energy, Elsevier, vol. 265(C).
    4. Wilberforce, Tabbi & Rezk, Hegazy & Olabi, A.G. & Epelle, Emmanuel I. & Abdelkareem, Mohammad Ali, 2023. "Comparative analysis on parametric estimation of a PEM fuel cell using metaheuristics algorithms," Energy, Elsevier, vol. 262(PB).
    5. Hassan Ali, Hossam & Fathy, Ahmed, 2024. "Reliable exponential distribution optimizer-based methodology for modeling proton exchange membrane fuel cells at different conditions," Energy, Elsevier, vol. 292(C).
    6. Ahmed Fathy & Abdulmohsen Alanazi, 2023. "An Efficient White Shark Optimizer for Enhancing the Performance of Proton Exchange Membrane Fuel Cells," Sustainability, MDPI, vol. 15(15), pages 1-21, July.
    7. Ćalasan, Martin & Micev, Mihailo & Hasanien, Hany M. & Abdel Aleem, Shady H.E., 2024. "PEM fuel cells: Two novel approaches for mathematical modeling and parameter estimation," Energy, Elsevier, vol. 290(C).
    8. Fathy, Ahmed & Rezk, Hegazy & Alharbi, Abdullah G. & Yousri, Dalia, 2023. "Proton exchange membrane fuel cell model parameters identification using Chaotically based-bonobo optimizer," Energy, Elsevier, vol. 268(C).
    9. Yuan, Yongliang & Yang, Qingkang & Ren, Jianji & Mu, Xiaokai & Wang, Zhenxi & Shen, Qianlong & Zhao, Wu, 2024. "Attack-defense strategy assisted osprey optimization algorithm for PEMFC parameters identification," Renewable Energy, Elsevier, vol. 225(C).
    10. Abdel-Basset, Mohamed & Mohamed, Reda & Abouhawwash, Mohamed, 2023. "On the facile and accurate determination of the highly accurate recent methods to optimize the parameters of different fuel cells: Simulations and analysis," Energy, Elsevier, vol. 272(C).
    11. Mohamed A. M. Shaheen & Hany M. Hasanien & Said F. Mekhamer & Mohammed H. Qais & Saad Alghuwainem & Zia Ullah & Marcos Tostado-Véliz & Rania A. Turky & Francisco Jurado & Mohamed R. Elkadeem, 2022. "Probabilistic Optimal Power Flow Solution Using a Novel Hybrid Metaheuristic and Machine Learning Algorithm," Mathematics, MDPI, vol. 10(17), pages 1-23, August.
    12. Ayatte I. Atteya & Dallia Ali & Nazmi Sellami, 2023. "Precise Dynamic Modelling of Real-World Hybrid Solar-Hydrogen Energy Systems for Grid-Connected Buildings," Energies, MDPI, vol. 16(14), pages 1-21, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ćalasan, Martin & Abdel Aleem, Shady H.E. & Hasanien, Hany M. & Alaas, Zuhair M. & Ali, Ziad M., 2023. "An innovative approach for mathematical modeling and parameter estimation of PEM fuel cells based on iterative Lambert W function," Energy, Elsevier, vol. 264(C).
    2. Ibrahim Alsaidan & Mohamed A. M. Shaheen & Hany M. Hasanien & Muhannad Alaraj & Abrar S. Alnafisah, 2021. "Proton Exchange Membrane Fuel Cells Modeling Using Chaos Game Optimization Technique," Sustainability, MDPI, vol. 13(14), pages 1-24, July.
    3. Andrew J. Riad & Hany M. Hasanien & Rania A. Turky & Ahmed H. Yakout, 2023. "Identifying the PEM Fuel Cell Parameters Using Artificial Rabbits Optimization Algorithm," Sustainability, MDPI, vol. 15(5), pages 1-17, March.
    4. Yang, Fan & Li, Yuehua & Chen, Dongfang & Hu, Song & Xu, Xiaoming, 2024. "Parameter identification of PEMFC steady-state model based on p-dimensional extremum seeking via simplex tuning optimization method," Energy, Elsevier, vol. 292(C).
    5. Hegazy Rezk & Tabbi Wilberforce & A. G. Olabi & Rania M. Ghoniem & Enas Taha Sayed & Mohammad Ali Abdelkareem, 2023. "Optimal Parameter Identification of a PEM Fuel Cell Using Recent Optimization Algorithms," Energies, MDPI, vol. 16(14), pages 1-20, July.
    6. Ćalasan, Martin & Micev, Mihailo & Hasanien, Hany M. & Abdel Aleem, Shady H.E., 2024. "PEM fuel cells: Two novel approaches for mathematical modeling and parameter estimation," Energy, Elsevier, vol. 290(C).
    7. Rezk, Hegazy & Olabi, A.G. & Ferahtia, Seydali & Sayed, Enas Taha, 2022. "Accurate parameter estimation methodology applied to model proton exchange membrane fuel cell," Energy, Elsevier, vol. 255(C).
    8. Mohamed Louzazni & Sameer Al-Dahidi & Marco Mussetta, 2020. "Fuel Cell Characteristic Curve Approximation Using the Bézier Curve Technique," Sustainability, MDPI, vol. 12(19), pages 1-23, October.
    9. Hachana, Oussama & El-Fergany, Attia A., 2022. "Efficient PEM fuel cells parameters identification using hybrid artificial bee colony differential evolution optimizer," Energy, Elsevier, vol. 250(C).
    10. Fathy, Ahmed & Rezk, Hegazy & Alharbi, Abdullah G. & Yousri, Dalia, 2023. "Proton exchange membrane fuel cell model parameters identification using Chaotically based-bonobo optimizer," Energy, Elsevier, vol. 268(C).
    11. Fathy, Ahmed & Babu, Thanikanti Sudhakar & Abdelkareem, Mohammad Ali & Rezk, Hegazy & Yousri, Dalia, 2022. "Recent approach based heterogeneous comprehensive learning Archimedes optimization algorithm for identifying the optimal parameters of different fuel cells," Energy, Elsevier, vol. 248(C).
    12. Ángel Encalada-Dávila & Samir Echeverría & Jordy Santana-Villamar & Gabriel Cedeño & Mayken Espinoza-Andaluz, 2021. "Optimization Algorithms: Optimal Parameters Computation for Modeling the Polarization Curves of a PEFC Considering the Effect of the Relative Humidity," Energies, MDPI, vol. 14(18), pages 1-21, September.
    13. Mohamed Ahmed Ali & Mohey Eldin Mandour & Mohammed Elsayed Lotfy, 2023. "Adaptive Estimation of Quasi-Empirical Proton Exchange Membrane Fuel Cell Models Based on Coot Bird Optimizer and Data Accumulation," Sustainability, MDPI, vol. 15(11), pages 1-20, June.
    14. Gouda, Eid A. & Kotb, Mohamed F. & El-Fergany, Attia A., 2021. "Jellyfish search algorithm for extracting unknown parameters of PEM fuel cell models: Steady-state performance and analysis," Energy, Elsevier, vol. 221(C).
    15. Rezk, Hegazy & Aly, Mokhtar & Fathy, Ahmed, 2021. "A novel strategy based on recent equilibrium optimizer to enhance the performance of PEM fuel cell system through optimized fuzzy logic MPPT," Energy, Elsevier, vol. 234(C).
    16. Wilberforce, Tabbi & Rezk, Hegazy & Olabi, A.G. & Epelle, Emmanuel I. & Abdelkareem, Mohammad Ali, 2023. "Comparative analysis on parametric estimation of a PEM fuel cell using metaheuristics algorithms," Energy, Elsevier, vol. 262(PB).
    17. Seleem, Sameh I. & Hasanien, Hany M. & El-Fergany, Attia A., 2021. "Equilibrium optimizer for parameter extraction of a fuel cell dynamic model," Renewable Energy, Elsevier, vol. 169(C), pages 117-128.
    18. Samuel Raafat Fahim & Hany M. Hasanien & Rania A. Turky & Abdulaziz Alkuhayli & Abdullrahman A. Al-Shamma’a & Abdullah M. Noman & Marcos Tostado-Véliz & Francisco Jurado, 2021. "Parameter Identification of Proton Exchange Membrane Fuel Cell Based on Hunger Games Search Algorithm," Energies, MDPI, vol. 14(16), pages 1-21, August.
    19. Najmi, Aezid-Ul-Hassan & Anyanwu, Ikechukwu S. & Xie, Xu & Liu, Zhi & Jiao, Kui, 2021. "Experimental investigation and optimization of proton exchange membrane fuel cell using different flow fields," Energy, Elsevier, vol. 217(C).
    20. Li, Yanju & Li, Dongxu & Ma, Zheshu & Zheng, Meng & Lu, Zhanghao & Song, Hanlin & Guo, Xinjia & Shao, Wei, 2022. "Performance analysis and optimization of a novel vehicular power system based on HT-PEMFC integrated methanol steam reforming and ORC," Energy, Elsevier, vol. 257(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:247:y:2022:i:c:s0360544222004339. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.