Workload management for air-cooled data centers: An energy and exergy based approach
Author
Abstract
Suggested Citation
DOI: 10.1016/j.energy.2020.118485
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Ebrahimi, Khosrow & Jones, Gerard F. & Fleischer, Amy S., 2014. "A review of data center cooling technology, operating conditions and the corresponding low-grade waste heat recovery opportunities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 31(C), pages 622-638.
- Garimella, Suresh V. & Persoons, Tim & Weibel, Justin & Yeh, Lian-Tuu, 2013. "Technological drivers in data centers and telecom systems: Multiscale thermal, electrical, and energy management," Applied Energy, Elsevier, vol. 107(C), pages 66-80.
- Zimmermann, Severin & Meijer, Ingmar & Tiwari, Manish K. & Paredes, Stephan & Michel, Bruno & Poulikakos, Dimos, 2012. "Aquasar: A hot water cooled data center with direct energy reuse," Energy, Elsevier, vol. 43(1), pages 237-245.
- Yan Bai & Lijun Gu, 2017. "Chip Temperature-Based Workload Allocation for Holistic Power Minimization in Air-Cooled Data Center," Energies, MDPI, vol. 10(12), pages 1-19, December.
- Gupta, Rohit & Asgari, Sahar & Moazamigoodarzi, Hosein & Pal, Souvik & Puri, Ishwar K., 2020. "Cooling architecture selection for air-cooled Data Centers by minimizing exergy destruction," Energy, Elsevier, vol. 201(C).
- Moazamigoodarzi, Hosein & Gupta, Rohit & Pal, Souvik & Tsai, Peiying Jennifer & Ghosh, Suvojit & Puri, Ishwar K., 2020. "Modeling temperature distribution and power consumption in IT server enclosures with row-based cooling architectures," Applied Energy, Elsevier, vol. 261(C).
- Moazamigoodarzi, Hosein & Tsai, Peiying Jennifer & Pal, Souvik & Ghosh, Suvojit & Puri, Ishwar K., 2019. "Influence of cooling architecture on data center power consumption," Energy, Elsevier, vol. 183(C), pages 525-535.
- Silva-Llanca, Luis & Ortega, Alfonso & Fouladi, Kamran & del Valle, Marcelo & Sundaralingam, Vikneshan, 2018. "Determining wasted energy in the airside of a perimeter-cooled data center via direct computation of the Exergy Destruction," Applied Energy, Elsevier, vol. 213(C), pages 235-246.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Wang, Fengjuan & Lv, Chengwei & Xu, Jiuping, 2023. "Carbon awareness oriented data center location and configuration: An integrated optimization method," Energy, Elsevier, vol. 278(C).
- Leyla Amiri & Edris Madadian & Navid Bahrani & Seyed Ali Ghoreishi-Madiseh, 2021. "Techno-Economic Analysis of Waste Heat Utilization in Data Centers: Application of Absorption Chiller Systems," Energies, MDPI, vol. 14(9), pages 1-11, April.
- Zhang, Yingbo & Shan, Kui & Li, Xiuming & Li, Hangxin & Wang, Shengwei, 2023. "Research and Technologies for next-generation high-temperature data centers – State-of-the-arts and future perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 171(C).
- Ji, Haoran & Chen, Sirui & Yu, Hao & Li, Peng & Yan, Jinyue & Song, Jieying & Wang, Chengshan, 2022. "Robust operation for minimizing power consumption of data centers with flexible substation integration," Energy, Elsevier, vol. 248(C).
- Gupta, Rohit & Asgari, Sahar & Moazamigoodarzi, Hosein & Down, Douglas G. & Puri, Ishwar K., 2021. "Energy, exergy and computing efficiency based data center workload and cooling management," Applied Energy, Elsevier, vol. 299(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Gupta, Rohit & Asgari, Sahar & Moazamigoodarzi, Hosein & Down, Douglas G. & Puri, Ishwar K., 2021. "Energy, exergy and computing efficiency based data center workload and cooling management," Applied Energy, Elsevier, vol. 299(C).
- Manaserh, Yaman M. & Tradat, Mohammad I. & Bani-Hani, Dana & Alfallah, Aseel & Sammakia, Bahgat G. & Nemati, Kourosh & Seymour, Mark J., 2022. "Machine learning assisted development of IT equipment compact models for data centers energy planning," Applied Energy, Elsevier, vol. 305(C).
- Gupta, Rohit & Asgari, Sahar & Moazamigoodarzi, Hosein & Pal, Souvik & Puri, Ishwar K., 2020. "Cooling architecture selection for air-cooled Data Centers by minimizing exergy destruction," Energy, Elsevier, vol. 201(C).
- Cheng Liu & Hang Yu, 2021. "Evaluation and Optimization of a Two-Phase Liquid-Immersion Cooling System for Data Centers," Energies, MDPI, vol. 14(5), pages 1-21, March.
- Hu, Zhi-Hua & Zheng, Yu-Xin & Wang, You-Gan, 2022. "Packing computing servers into the vessel of an underwater data center considering cooling efficiency," Applied Energy, Elsevier, vol. 314(C).
- Cho, Jinkyun & Park, Beungyong & Jang, Seungmin, 2022. "Development of an independent modular air containment system for high-density data centers: Experimental investigation of row-based cooling performance and PUE," Energy, Elsevier, vol. 258(C).
- Cho, Jinkyun, 2024. "Optimal supply air temperature with respect to data center operational stability and energy efficiency in a row-based cooling system under fault conditions," Energy, Elsevier, vol. 288(C).
- Xiaofei Huang & Junwei Yan & Xuan Zhou & Yixin Wu & Shichen Hu, 2023. "Cooling Technologies for Internet Data Center in China: Principle, Energy Efficiency, and Applications," Energies, MDPI, vol. 16(20), pages 1-31, October.
- Yuan, Xiaolei & Liang, Yumin & Hu, Xinyi & Xu, Yizhe & Chen, Yongbao & Kosonen, Risto, 2023. "Waste heat recoveries in data centers: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
- Moazamigoodarzi, Hosein & Gupta, Rohit & Pal, Souvik & Tsai, Peiying Jennifer & Ghosh, Suvojit & Puri, Ishwar K., 2020. "Modeling temperature distribution and power consumption in IT server enclosures with row-based cooling architectures," Applied Energy, Elsevier, vol. 261(C).
- Li, Jian & Jurasz, Jakub & Li, Hailong & Tao, Wen-Quan & Duan, Yuanyuan & Yan, Jinyue, 2020. "A new indicator for a fair comparison on the energy performance of data centers," Applied Energy, Elsevier, vol. 276(C).
- Moazamigoodarzi, Hosein & Tsai, Peiying Jennifer & Pal, Souvik & Ghosh, Suvojit & Puri, Ishwar K., 2019. "Influence of cooling architecture on data center power consumption," Energy, Elsevier, vol. 183(C), pages 525-535.
- Chu, Wen-Xiao & Wang, Chi-Chuan, 2019. "A review on airflow management in data centers," Applied Energy, Elsevier, vol. 240(C), pages 84-119.
- Du, Yahui & Zhou, Zhihua & Yang, Xiaochen & Yang, Xueqing & Wang, Cheng & Liu, Junwei & Yuan, Jianjuan, 2023. "Dynamic thermal environment management technologies for data center: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 187(C).
- Heran Jing & Zhenhua Quan & Yaohua Zhao & Lincheng Wang & Ruyang Ren & Ruixue Dong & Yuting Wu, 2022. "Experimental Investigation of Heat Transfer and Flow Characteristics of Split Natural Cooling System for Data Center Based on Micro Heat Pipe Array," Energies, MDPI, vol. 15(12), pages 1-22, June.
- Wansheng Yang & Lin Yang & Junjie Ou & Zhongqi Lin & Xudong Zhao, 2019. "Investigation of Heat Management in High Thermal Density Communication Cabinet by a Rear Door Liquid Cooling System," Energies, MDPI, vol. 12(22), pages 1-25, November.
- Leyla Amiri & Edris Madadian & Navid Bahrani & Seyed Ali Ghoreishi-Madiseh, 2021. "Techno-Economic Analysis of Waste Heat Utilization in Data Centers: Application of Absorption Chiller Systems," Energies, MDPI, vol. 14(9), pages 1-11, April.
- Huang, Pei & Copertaro, Benedetta & Zhang, Xingxing & Shen, Jingchun & Löfgren, Isabelle & Rönnelid, Mats & Fahlen, Jan & Andersson, Dan & Svanfeldt, Mikael, 2020. "A review of data centers as prosumers in district energy systems: Renewable energy integration and waste heat reuse for district heating," Applied Energy, Elsevier, vol. 258(C).
- Bryan Coyne & Eleanor Denny, 2021. "Applying a Model of Technology Diffusion to Quantify the Potential Benefit of Improved Energy Efficiency in Data Centres," Energies, MDPI, vol. 14(22), pages 1-18, November.
- Huang, Qionghai & Shao, Shuangquan & Zhang, Hainan & Tian, Changqing, 2019. "Development and composition of a data center heat recovery system and evaluation of annual operation performance," Energy, Elsevier, vol. 189(C).
More about this item
Keywords
Data center; Workload management; Energy analysis; Exergy analysis; Irreversibility; Multi-objective optimization;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:209:y:2020:i:c:s0360544220315930. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.