IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v216y2021ics0360544220324117.html
   My bibliography  Save this article

Experimental study on small scale horizontal axis wind turbine of analytically-optimized blade with linearized chord twist angle profile

Author

Listed:
  • Abdelsalam, Ali M.
  • El-Askary, W.A.
  • Kotb, M.A.
  • Sakr, I.M.

Abstract

Blade linearization is used to simplify the blade design and reduce the blade manufacturing cost of Small-Scale Horizontal Axis Wind Turbine (SSHAWT). Compared to analytical studies, experimental investigations on the blade linearization of SSHAWT are rare. The present work aims to introduce a simple and efficient design of SSHAWT, and verify its performance experimentally. Two designs of rotor models are proposed and their performance is analyzed. The first one is a classical rotor with non-linear chord and twist distributions and the second one is a new linearized rotor design. Analytical optimizations of the linearized blades are employed through three tuning steps using Blade Element Momentum (BEM) theory. The highest coefficient of correlation with the classical rotor among the linearized rotor is found to be 0.969. The two rotor models, selected based on the optimization results are then fabricated, tested, and compared. The comparison made between the two designs is verified experimentally, at different wind speeds of 5, 6, 8, and 10 m/s. Further, measurements are performed at blade pitching of −3, 0, and 3°. It was found that, the proposed new linear design of the rotor blades has efficient performance, with maximum power coefficient Cpmax=0.426 at tip-speed ratio 5.1 and wind speed 10 m/s. The performance in terms of power coefficient approaches that achieved by non-linear blades. Moreover, there is significant reduction in the blade size volume of the new design by 26% which consequently reduces the blade weight. The results obtained in the present work show higher starting ability and extended operating range of the linearized model at lower wind speed compared with the classical model.

Suggested Citation

  • Abdelsalam, Ali M. & El-Askary, W.A. & Kotb, M.A. & Sakr, I.M., 2021. "Experimental study on small scale horizontal axis wind turbine of analytically-optimized blade with linearized chord twist angle profile," Energy, Elsevier, vol. 216(C).
  • Handle: RePEc:eee:energy:v:216:y:2021:i:c:s0360544220324117
    DOI: 10.1016/j.energy.2020.119304
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544220324117
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2020.119304?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Farhan, A. & Hassanpour, A. & Burns, A. & Motlagh, Y. Ghaffari, 2019. "Numerical study of effect of winglet planform and airfoil on a horizontal axis wind turbine performance," Renewable Energy, Elsevier, vol. 131(C), pages 1255-1273.
    2. Wang, Ying & Li, Gaohui & Shen, Sheng & Huang, Diangui & Zheng, Zhongquan, 2018. "Investigation on aerodynamic performance of horizontal axis wind turbine by setting micro-cylinder in front of the blade leading edge," Energy, Elsevier, vol. 143(C), pages 1107-1124.
    3. Liu, Xiongwei & Wang, Lin & Tang, Xinzi, 2013. "Optimized linearization of chord and twist angle profiles for fixed-pitch fixed-speed wind turbine blades," Renewable Energy, Elsevier, vol. 57(C), pages 111-119.
    4. Tahani, Mojtaba & Kavari, Ghazale & Masdari, Mehran & Mirhosseini, Mojtaba, 2017. "Aerodynamic design of horizontal axis wind turbine with innovative local linearization of chord and twist distributions," Energy, Elsevier, vol. 131(C), pages 78-91.
    5. Syed Ahmed Kabir, Ijaz Fazil & Ng, E.Y.K., 2017. "Insight into stall delay and computation of 3D sectional aerofoil characteristics of NREL phase VI wind turbine using inverse BEM and improvement in BEM analysis accounting for stall delay effect," Energy, Elsevier, vol. 120(C), pages 518-536.
    6. Maalawi, K.Y. & Badr, M.A, 2003. "A practical approach for selecting optimum wind rotors," Renewable Energy, Elsevier, vol. 28(5), pages 803-822.
    7. Fischer, Gunter Reinald & Kipouros, Timoleon & Savill, Anthony Mark, 2014. "Multi-objective optimisation of horizontal axis wind turbine structure and energy production using aerofoil and blade properties as design variables," Renewable Energy, Elsevier, vol. 62(C), pages 506-515.
    8. Singh, Ronit K. & Ahmed, M. Rafiuddin & Zullah, Mohammad Asid & Lee, Young-Ho, 2012. "Design of a low Reynolds number airfoil for small horizontal axis wind turbines," Renewable Energy, Elsevier, vol. 42(C), pages 66-76.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Widad Yossri & Samah Ben Ayed & Abdessattar Abdelkefi, 2023. "High-Fidelity Modeling and Investigation on Blade Shape and Twist Angle Effects on the Efficiency of Small-Scale Wind Turbines," Energies, MDPI, vol. 16(8), pages 1-26, April.
    2. Patricio A. Corbalán & Luciano E. Chiang, 2024. "Fast Power Coefficient vs. Tip–Speed Ratio Curves for Small Wind Turbines with Single-Variable Measurements following a Single Test Run," Energies, MDPI, vol. 17(5), pages 1-23, March.
    3. Yossri, W. & Ben Ayed, S. & Abdelkefi, A., 2023. "Evaluation of the efficiency of bioinspired blade designs for low-speed small-scale wind turbines with the presence of inflow turbulence effects," Energy, Elsevier, vol. 273(C).
    4. Mohammed Debbache & Messaoud Hazmoune & Semcheddine Derfouf & Dana-Alexandra Ciupageanu & Gheorghe Lazaroiu, 2021. "Wind Blade Twist Correction for Enhanced Annual Energy Production of Wind Turbines," Sustainability, MDPI, vol. 13(12), pages 1-17, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tahani, Mojtaba & Kavari, Ghazale & Masdari, Mehran & Mirhosseini, Mojtaba, 2017. "Aerodynamic design of horizontal axis wind turbine with innovative local linearization of chord and twist distributions," Energy, Elsevier, vol. 131(C), pages 78-91.
    2. Jia, Liangyue & Hao, Jia & Hall, John & Nejadkhaki, Hamid Khakpour & Wang, Guoxin & Yan, Yan & Sun, Mengyuan, 2021. "A reinforcement learning based blade twist angle distribution searching method for optimizing wind turbine energy power," Energy, Elsevier, vol. 215(PA).
    3. Ahmadi Asl, Hamid & Kamali Monfared, Reza & Rad, Manouchehr, 2017. "Experimental investigation of blade number and design effects for a ducted wind turbine," Renewable Energy, Elsevier, vol. 105(C), pages 334-343.
    4. Alkhabbaz, Ali & Yang, Ho-Seong & Weerakoon, A.H Samitha & Lee, Young-Ho, 2021. "A novel linearization approach of chord and twist angle distribution for 10 kW horizontal axis wind turbine," Renewable Energy, Elsevier, vol. 178(C), pages 1398-1420.
    5. Kyoungboo Yang, 2020. "Geometry Design Optimization of a Wind Turbine Blade Considering Effects on Aerodynamic Performance by Linearization," Energies, MDPI, vol. 13(9), pages 1-18, May.
    6. Mauro, S. & Lanzafame, R. & Messina, M. & Brusca, S., 2023. "On the importance of the root-to-hub adapter effects on HAWT performance: A CFD-BEM numerical investigation," Energy, Elsevier, vol. 275(C).
    7. Fan Zhang & Juchuan Dai & Deshun Liu & Linxing Li & Xin Long, 2019. "Investigation of the Pitch Load of Large-Scale Wind Turbines Using Field SCADA Data," Energies, MDPI, vol. 12(3), pages 1-20, February.
    8. Singh, Ronit K. & Ahmed, M. Rafiuddin, 2013. "Blade design and performance testing of a small wind turbine rotor for low wind speed applications," Renewable Energy, Elsevier, vol. 50(C), pages 812-819.
    9. Azlan, F. & Tan, M.K. & Tan, B.T. & Ismadi, M.-Z., 2023. "Passive flow-field control using dimples for performance enhancement of horizontal axis wind turbine," Energy, Elsevier, vol. 271(C).
    10. Mostafa, Wafaa & Abdelsamie, Abouelmagd & Sedrak, Momtaz & Thévenin, Dominique & Mohamed, Mohamed H., 2022. "Quantitative impact of a micro-cylinder as a passive flow control on a horizontal axis wind turbine performance," Energy, Elsevier, vol. 244(PA).
    11. Del Valle Carrasco, Arturo & Valles-Rosales, Delia J. & Mendez, Luis C. & Rodriguez, Manuel I., 2016. "A site-specific design of a fixed-pitch fixed-speed wind turbine blade for energy optimization using surrogate models," Renewable Energy, Elsevier, vol. 88(C), pages 112-119.
    12. Moghadassian, Behnam & Sharma, Anupam, 2020. "Designing wind turbine rotor blades to enhance energy capture in turbine arrays," Renewable Energy, Elsevier, vol. 148(C), pages 651-664.
    13. Sun, ZhaoCheng & Li, Dong & Mao, YuFeng & Feng, Long & Zhang, Yue & Liu, Chao, 2022. "Anti-cavitation optimal design and experimental research on tidal turbines based on improved inverse BEM," Energy, Elsevier, vol. 239(PD).
    14. Guoqiang, Li & Weiguo, Zhang & Yubiao, Jiang & Pengyu, Yang, 2019. "Experimental investigation of dynamic stall flow control for wind turbine airfoils using a plasma actuator," Energy, Elsevier, vol. 185(C), pages 90-101.
    15. Wang, Lin & Liu, Xiongwei & Renevier, Nathalie & Stables, Matthew & Hall, George M., 2014. "Nonlinear aeroelastic modelling for wind turbine blades based on blade element momentum theory and geometrically exact beam theory," Energy, Elsevier, vol. 76(C), pages 487-501.
    16. Wang, Peilin & Liu, Qingsong & Li, Chun & Miao, Weipao & Yue, Minnan & Xu, Zifei, 2022. "Investigation of the aerodynamic characteristics of horizontal axis wind turbine using an active flow control method via boundary layer suction," Renewable Energy, Elsevier, vol. 198(C), pages 1032-1048.
    17. N. Aravindhan & M. P. Natarajan & S. Ponnuvel & P.K. Devan, 2023. "Recent developments and issues of small-scale wind turbines in urban residential buildings- A review," Energy & Environment, , vol. 34(4), pages 1142-1169, June.
    18. Khaled, Mohamed & Ibrahim, Mostafa M. & Abdel Hamed, Hesham E. & AbdelGwad, Ahmed F., 2019. "Investigation of a small Horizontal–Axis wind turbine performance with and without winglet," Energy, Elsevier, vol. 187(C).
    19. Erkan, Onur & Özkan, Musa & Karakoç, T. Hikmet & Garrett, Stephen J. & Thomas, Peter J., 2020. "Investigation of aerodynamic performance characteristics of a wind-turbine-blade profile using the finite-volume method," Renewable Energy, Elsevier, vol. 161(C), pages 1359-1367.
    20. Zhu, Wei Jun & Shen, Wen Zhong & Sørensen, Jens Nørkær & Yang, Hua, 2017. "Verification of a novel innovative blade root design for wind turbines using a hybrid numerical method," Energy, Elsevier, vol. 141(C), pages 1661-1670.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:216:y:2021:i:c:s0360544220324117. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.