IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i5p1199-d1350163.html
   My bibliography  Save this article

Fast Power Coefficient vs. Tip–Speed Ratio Curves for Small Wind Turbines with Single-Variable Measurements following a Single Test Run

Author

Listed:
  • Patricio A. Corbalán

    (Department of Mechanical & Metallurgical Engineering, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile)

  • Luciano E. Chiang

    (Department of Mechanical & Metallurgical Engineering, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile)

Abstract

Small wind turbines (SWTs) face tremendous challenges in being developed into a more reliable and widespread energy solution, with a number of efficiency, reliability, and cost issues that are yet to be resolved. As part of the development stages of an SWT, testing the resulting efficiency and determining appropriate working ranges are of high importance. In this paper, a methodology is presented for testing SWTs to obtain characteristic performance curves such as C p (power coefficient) vs. T S R (tip–speed ratio), and torque vs. ω , in a simpler and faster yet accurate manner as an alternative energy solution when a wind tunnel is not available. The performance curves are obtained with the SWT mounted on a platform moving along a runway, requiring only a few minutes of data acquisition. Furthermore, it is only required to measure a single variable, i.e., the generator output voltage. A suitable physics-based mathematical model for the system allows for deriving the desired performance curves from this set of minimal data. The methodology was demonstrated by testing a prototype SWT developed by the authors. The tested prototype had a permanent magnet synchronous generator, but the methodology can be applied to any type of generator with a suitable mathematical model. Given its level of simplicity, accuracy, low cost, and ease of implementation, the proposed testing method has advantages that are helpful in the development process of SWTs, especially if access to a proper wind tunnel is prevented for any reason. To validate the methodology, C p vs. T S R curves were obtained for an SWT prototype tested under different test conditions, arriving always at the same curve as would be expected. In this case, the test prototype reached a maximum power coefficient ( C p ) of 0.35 for wind velocities from 20 to 50 km/h for a T S R of 5.5.

Suggested Citation

  • Patricio A. Corbalán & Luciano E. Chiang, 2024. "Fast Power Coefficient vs. Tip–Speed Ratio Curves for Small Wind Turbines with Single-Variable Measurements following a Single Test Run," Energies, MDPI, vol. 17(5), pages 1-23, March.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:5:p:1199-:d:1350163
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/5/1199/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/5/1199/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Abdelsalam, Ali M. & El-Askary, W.A. & Kotb, M.A. & Sakr, I.M., 2021. "Experimental study on small scale horizontal axis wind turbine of analytically-optimized blade with linearized chord twist angle profile," Energy, Elsevier, vol. 216(C).
    2. Ghorani, Mohammad Mahdi & Karimi, Behrooz & Mirghavami, Seyed Mohammad & Saboohi, Zoheir, 2023. "A numerical study on the feasibility of electricity production using an optimized wind delivery system (Invelox) integrated with a Horizontal axis wind turbine (HAWT)," Energy, Elsevier, vol. 268(C).
    3. Maheri, Alireza, 2020. "Multiobjective optimisation and integrated design of wind turbine blades using WTBM-ANSYS for high fidelity structural analysis," Renewable Energy, Elsevier, vol. 145(C), pages 814-834.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ashkan Safari & Hamed Kheirandish Gharehbagh & Morteza Nazari Heris, 2023. "DeepVELOX: INVELOX Wind Turbine Intelligent Power Forecasting Using Hybrid GWO–GBR Algorithm," Energies, MDPI, vol. 16(19), pages 1-22, September.
    2. Ainura Dyusembaeva & Nazgul Tanasheva & Ardak Tussypbayeva & Asem Bakhtybekova & Zhibek Kutumova & Sholpan Kyzdarbekova & Almat Mukhamedrakhim, 2024. "Numerical Simulation to Investigate the Effect of Adding a Fixed Blade to a Magnus Wind Turbine," Energies, MDPI, vol. 17(16), pages 1-18, August.
    3. Yossri, W. & Ben Ayed, S. & Abdelkefi, A., 2023. "Evaluation of the efficiency of bioinspired blade designs for low-speed small-scale wind turbines with the presence of inflow turbulence effects," Energy, Elsevier, vol. 273(C).
    4. Widad Yossri & Samah Ben Ayed & Abdessattar Abdelkefi, 2023. "High-Fidelity Modeling and Investigation on Blade Shape and Twist Angle Effects on the Efficiency of Small-Scale Wind Turbines," Energies, MDPI, vol. 16(8), pages 1-26, April.
    5. Jia, Liangyue & Hao, Jia & Hall, John & Nejadkhaki, Hamid Khakpour & Wang, Guoxin & Yan, Yan & Sun, Mengyuan, 2021. "A reinforcement learning based blade twist angle distribution searching method for optimizing wind turbine energy power," Energy, Elsevier, vol. 215(PA).
    6. Ngwarai Shambira & Golden Makaka & Patrick Mukumba, 2024. "Velocity Augmentation Model for an Empty Concentrator-Diffuser-Augmented Wind Turbine and Optimisation of Geometrical Parameters Using Surface Response Methodology," Sustainability, MDPI, vol. 16(4), pages 1-30, February.
    7. Mohammed Debbache & Messaoud Hazmoune & Semcheddine Derfouf & Dana-Alexandra Ciupageanu & Gheorghe Lazaroiu, 2021. "Wind Blade Twist Correction for Enhanced Annual Energy Production of Wind Turbines," Sustainability, MDPI, vol. 13(12), pages 1-17, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:5:p:1199-:d:1350163. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.