IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v214y2021ics0360544220320880.html
   My bibliography  Save this article

Combustion characteristics of non-premixed CH4/CO2 jet flames in coflow air at normal and elevated temperatures

Author

Listed:
  • Li, Xing
  • Xie, Shengrong
  • Zhang, Jing
  • Li, Tao
  • Wang, Xiaohan

Abstract

Experimental study on the combustion characteristics of CH4/CO2 non-premixed jet flames in a coflow air at normal and elevated temperatures was conducted for the development of biogas-fueled regenerative burner. The CH4/N2 non-premixed jet flame was also investigated for comparison. The laminar flame height, lift-off height and blow-out limit were obtained and compared. The experimental results show that the laminar flame height of CH4/CO2 flame is lower than that of CH4/N2 flame in the same condition. The reason was clarified by theoretical analysis and two-dimensional numerical computation. For the turbulent flame, the CO2 dilution in the fuel steam leads to a higher liftoff height and a lower blowout limit. The fuel velocity range of stable lifted flame and the blowout limit are significantly increased at elevated air temperature. The premixed flame model was employed to analyze the liftoff heights and blowout velocities. The non-dimensional liftoff height increases linearly versus the non-dimensional fuel jet velocity. And linear relationship between non-dimensional blowout velocity and Reynolds number was obtained. The influences of laminar flame speed, fuel kinematic viscosity and the density ratio of fuel to coflow air on liftoff height and blowout limit were investigated by using the premixed flame model and sensitivity analysis.

Suggested Citation

  • Li, Xing & Xie, Shengrong & Zhang, Jing & Li, Tao & Wang, Xiaohan, 2021. "Combustion characteristics of non-premixed CH4/CO2 jet flames in coflow air at normal and elevated temperatures," Energy, Elsevier, vol. 214(C).
  • Handle: RePEc:eee:energy:v:214:y:2021:i:c:s0360544220320880
    DOI: 10.1016/j.energy.2020.118981
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544220320880
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2020.118981?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Rasi, S. & Veijanen, A. & Rintala, J., 2007. "Trace compounds of biogas from different biogas production plants," Energy, Elsevier, vol. 32(8), pages 1375-1380.
    2. Devi, Sangjukta & Sahoo, Niranjan & Muthukumar, P., 2020. "Experimental studies on biogas combustion in a novel double layer inert Porous Radiant Burner," Renewable Energy, Elsevier, vol. 149(C), pages 1040-1052.
    3. Kruczek, Grzegorz & Przybyła, Grzegorz & Ziółkowski, Łukasz & Adamczyk, Wojciech P., 2019. "Comparative assessment of the application of methane and biogas in energy production: An experimental and numerical investigation," Renewable Energy, Elsevier, vol. 143(C), pages 1519-1530.
    4. MosayebNezhad, M. & Mehr, A.S. & Lanzini, A. & Misul, D. & Santarelli, M., 2019. "Technology review and thermodynamic performance study of a biogas-fed micro humid air turbine," Renewable Energy, Elsevier, vol. 140(C), pages 407-418.
    5. Saadabadi, S. Ali & Thallam Thattai, Aditya & Fan, Liyuan & Lindeboom, Ralph E.F. & Spanjers, Henri & Aravind, P.V., 2019. "Solid Oxide Fuel Cells fuelled with biogas: Potential and constraints," Renewable Energy, Elsevier, vol. 134(C), pages 194-214.
    6. Pizzuti, L. & Martins, C.A. & Lacava, P.T., 2016. "Laminar burning velocity and flammability limits in biogas: A literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 856-865.
    7. Talibi, Midhat & Hellier, Paul & Ladommatos, Nicos, 2017. "Combustion and exhaust emission characteristics, and in-cylinder gas composition, of hydrogen enriched biogas mixtures in a diesel engine," Energy, Elsevier, vol. 124(C), pages 397-412.
    8. Park, Su Han & Yoon, Seung Hyun & Cha, Junepyo & Lee, Chang Sik, 2014. "Mixing effects of biogas and dimethyl ether (DME) on combustion and emission characteristics of DME fueled high-speed diesel engine," Energy, Elsevier, vol. 66(C), pages 413-422.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zuo, Wei & Zhang, Yuntian & Li, Qingqing & Li, Jing & He, Zhu, 2021. "Numerical investigations on hydrogen-fueled micro-cylindrical combustors with cavity for micro-thermophotovoltaic applications," Energy, Elsevier, vol. 223(C).
    2. Tang, Zhenhua & Wang, Zhirong & Zhao, Kun, 2023. "Flame stabilization characteristics of turbulent hydrogen jet flame diluted by nitrogen," Energy, Elsevier, vol. 283(C).
    3. Wang, Zhenhua & Jiang, Juncheng & Wang, Guanghu & Ni, Lei & Pan, Yong & Li, Meng, 2023. "Flame morphologic characteristics of horizontally oriented jet fires impinging on a vertical plate: Experiments and theoretical analysis," Energy, Elsevier, vol. 264(C).
    4. Peng, Yudan & Fu, Guangming & Chen, Jiying & Sun, Baojiang & Sun, Xiaohui, 2024. "Bottom-hole pressure inversion method for nature gas wells based on blowout combustion flame shape parameters," Energy, Elsevier, vol. 294(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mulu, Elshaday & M'Arimi, Milton M. & Ramkat, Rose C., 2021. "A review of recent developments in application of low cost natural materials in purification and upgrade of biogas," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    2. Wei, Zhilong & Zhen, Haisheng & Leung, Chunwah & Cheung, Chunshun & Huang, Zuohua, 2020. "Effects of unburned gases velocity on the CO/NO2/NOx formations and overall emissions of laminar premixed biogas-hydrogen impinging flame," Energy, Elsevier, vol. 196(C).
    3. Tsipis, E.V. & Agarkov, D.A. & Borisov, Yu.A. & Kiseleva, S.V. & Tarasenko, A.B. & Bredikhin, S.I. & Kharton, V.V., 2023. "Waste gas utilization potential for solid oxide fuel cells: A brief review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    4. Krzysztof Gaska & Agnieszka Generowicz & Anna Gronba-Chyła & Józef Ciuła & Iwona Wiewiórska & Paweł Kwaśnicki & Marcin Mala & Krzysztof Chyła, 2023. "Artificial Intelligence Methods for Analysis and Optimization of CHP Cogeneration Units Based on Landfill Biogas as a Progress in Improving Energy Efficiency and Limiting Climate Change," Energies, MDPI, vol. 16(15), pages 1-19, July.
    5. Bharathiraja, B. & Chakravarthy, M. & Ranjith Kumar, R. & Yogendran, D. & Yuvaraj, D. & Jayamuthunagai, J. & Praveen Kumar, R. & Palani, S., 2015. "Aquatic biomass (algae) as a future feed stock for bio-refineries: A review on cultivation, processing and products," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 634-653.
    6. Zhang, Yuyao & Kawasaki, Yu & Oshita, Kazuyuki & Takaoka, Masaki & Minami, Daisuke & Inoue, Go & Tanaka, Toshihiro, 2021. "Economic assessment of biogas purification systems for removal of both H2S and siloxane from biogas," Renewable Energy, Elsevier, vol. 168(C), pages 119-130.
    7. Ding, Xiaoyi & Lv, Xiaojing & Weng, Yiwu, 2019. "Coupling effect of operating parameters on performance of a biogas-fueled solid oxide fuel cell/gas turbine hybrid system," Applied Energy, Elsevier, vol. 254(C).
    8. Kozarac, Darko & Taritas, Ivan & Vuilleumier, David & Saxena, Samveg & Dibble, Robert W., 2016. "Experimental and numerical analysis of the performance and exhaust gas emissions of a biogas/n-heptane fueled HCCI engine," Energy, Elsevier, vol. 115(P1), pages 180-193.
    9. Naja, Ghinwa M. & Alary, René & Bajeat, Philippe & Bellenfant, Gaël & Godon, Jean-Jacques & Jaeg, Jean-Philippe & Keck, Gérard & Lattes, Armand & Leroux, Carole & Modelon, Hugues & Moletta-Denat, Mari, 2011. "Assessment of biogas potential hazards," Renewable Energy, Elsevier, vol. 36(12), pages 3445-3451.
    10. Dahye Kim & Kyung-Tae Kim & Young-Kwon Park, 2020. "A Comparative Study on the Reduction Effect in Greenhouse Gas Emissions between the Combined Heat and Power Plant and Boiler," Sustainability, MDPI, vol. 12(12), pages 1-11, June.
    11. Venkatesh, G. & Elmi, Rashid Abdi, 2013. "Economic–environmental analysis of handling biogas from sewage sludge digesters in WWTPs (wastewater treatment plants) for energy recovery: Case study of Bekkelaget WWTP in Oslo (Norway)," Energy, Elsevier, vol. 58(C), pages 220-235.
    12. Rasi, Saija & Lehtinen, Jenni & Rintala, Jukka, 2010. "Determination of organic silicon compounds in biogas from wastewater treatments plants, landfills, and co-digestion plants," Renewable Energy, Elsevier, vol. 35(12), pages 2666-2673.
    13. Cheng, Shikun & Li, Zifu & Mang, Heinz-Peter & Neupane, Kalidas & Wauthelet, Marc & Huba, Elisabeth-Maria, 2014. "Application of fault tree approach for technical assessment of small-sized biogas systems in Nepal," Applied Energy, Elsevier, vol. 113(C), pages 1372-1381.
    14. Rimkus, Alfredas & Matijošius, Jonas & Bogdevičius, Marijonas & Bereczky, Ákos & Török, Ádám, 2018. "An investigation of the efficiency of using O2 and H2 (hydrooxile gas -HHO) gas additives in a ci engine operating on diesel fuel and biodiesel," Energy, Elsevier, vol. 152(C), pages 640-651.
    15. Devi, Sangjukta & Sahoo, Niranjan & Muthukumar, P., 2020. "Experimental studies on biogas combustion in a novel double layer inert Porous Radiant Burner," Renewable Energy, Elsevier, vol. 149(C), pages 1040-1052.
    16. Gustafsson, Marcus & Cordova, Stephanie S. & Svensson, Niclas & Eklund, Mats, 2024. "Climate performance of liquefied biomethane with carbon dioxide utilization or storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 192(C).
    17. Ekaterina Matus & Mikhail Kerzhentsev & Ilyas Ismagilov & Andrey Nikitin & Sergey Sozinov & Zinfer Ismagilov, 2023. "Hydrogen Production from Biogas: Development of an Efficient Nickel Catalyst by the Exsolution Approach," Energies, MDPI, vol. 16(7), pages 1-21, March.
    18. Rosha, Pali & Dhir, Amit & Mohapatra, Saroj Kumar, 2018. "Influence of gaseous fuel induction on the various engine characteristics of a dual fuel compression ignition engine: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3333-3349.
    19. Kovalovszki, Adam & Treu, Laura & Ellegaard, Lars & Luo, Gang & Angelidaki, Irini, 2020. "Modeling temperature response in bioenergy production: Novel solution to a common challenge of anaerobic digestion," Applied Energy, Elsevier, vol. 263(C).
    20. Gandiglio, Marta, 2022. "Design and operation of an industrial size adsorption-based cleaning system for biogas use in fuel cells," Energy, Elsevier, vol. 259(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:214:y:2021:i:c:s0360544220320880. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.