IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v149y2020icp1040-1052.html
   My bibliography  Save this article

Experimental studies on biogas combustion in a novel double layer inert Porous Radiant Burner

Author

Listed:
  • Devi, Sangjukta
  • Sahoo, Niranjan
  • Muthukumar, P.

Abstract

The objective of this study is to investigate the feasibility of raw biogas combustion in a state-of-the-art Sideway Faced Porous Radiant Burner (SFPRB). Combustion takes place in the circular double-layered SFPRB composed of Silicon Carbide (SiC) and Alumina (Al2O3) porous zones. The experimental investigations were performed in the input power range of 5–10 kW and within the stable equivalence ratio range of 0.75–0.97. A detailed study on the impact of these operational conditions on the thermal behaviour of SFPRB in terms of temperature distribution, radiation efficiency and emission characteristics are presented. Both gaseous and solid phase temperatures over the surface of the burner were found to increase with rise in input power. Heat distribution across the burner was found to be uniform for all the cases. Measured values of CO and NOx emissions were found to increase with increase in input power and equivalence ratio and reached maximum of 165 ppm and 8.2 ppm, respectively. The maximum radiation efficiency of 33% was found at 5 kW input power and 0.97 equivalence ratio. The overall assessment showed that the newly developed SFPRB was capable of providing efficient combustion of raw biogas in the lean fuel-air mixture range.

Suggested Citation

  • Devi, Sangjukta & Sahoo, Niranjan & Muthukumar, P., 2020. "Experimental studies on biogas combustion in a novel double layer inert Porous Radiant Burner," Renewable Energy, Elsevier, vol. 149(C), pages 1040-1052.
  • Handle: RePEc:eee:renene:v:149:y:2020:i:c:p:1040-1052
    DOI: 10.1016/j.renene.2019.10.092
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148119315836
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2019.10.092?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Taleghani, Giti & Shabani Kia, Akbar, 2005. "Technical–economical analysis of the Saveh biogas power plant," Renewable Energy, Elsevier, vol. 30(3), pages 441-446.
    2. Kalsi, Sunmeet Singh & Subramanian, K.A., 2017. "Effect of simulated biogas on performance, combustion and emissions characteristics of a bio-diesel fueled diesel engine," Renewable Energy, Elsevier, vol. 106(C), pages 78-90.
    3. Keramiotis, Christos & Stelzner, Björn & Trimis, Dimosthenis & Founti, Maria, 2012. "Porous burners for low emission combustion: An experimental investigation," Energy, Elsevier, vol. 45(1), pages 213-219.
    4. Kruczek, Grzegorz & Przybyła, Grzegorz & Ziółkowski, Łukasz & Adamczyk, Wojciech P., 2019. "Comparative assessment of the application of methane and biogas in energy production: An experimental and numerical investigation," Renewable Energy, Elsevier, vol. 143(C), pages 1519-1530.
    5. Yu, Byeonghun & Kum, Sung-Min & Lee, Chang-Eon & Lee, Seungro, 2013. "Combustion characteristics and thermal efficiency for premixed porous-media types of burners," Energy, Elsevier, vol. 53(C), pages 343-350.
    6. Mittal, Shivika & Ahlgren, Erik O. & Shukla, P.R., 2019. "Future biogas resource potential in India: A bottom-up analysis," Renewable Energy, Elsevier, vol. 141(C), pages 379-389.
    7. Maznoy, Anatoly & Kirdyashkin, Alexander & Minaev, Sergey & Markov, Alexey & Pichugin, Nikita & Yakovlev, Evgeny, 2018. "A study on the effects of porous structure on the environmental and radiative characteristics of cylindrical Ni-Al burners," Energy, Elsevier, vol. 160(C), pages 399-409.
    8. Mujeebu, M. Abdul & Abdullah, M.Z. & Bakar, M.Z. Abu & Mohamad, A.A. & Abdullah, M.K., 2009. "Applications of porous media combustion technology - A review," Applied Energy, Elsevier, vol. 86(9), pages 1365-1375, September.
    9. Pantangi, V.K. & Mishra, Subhash C. & Muthukumar, P. & Reddy, Rajesh, 2011. "Studies on porous radiant burners for LPG (liquefied petroleum gas) cooking applications," Energy, Elsevier, vol. 36(10), pages 6074-6080.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Peng, Qingguo & Xie, Bo & Yang, Wenming & Tang, Shihao & Li, Zhenwei & Zhou, Peng & Luo, Ningkang, 2021. "Effects of porosity and multilayers of porous medium on the hydrogen-fueled combustion and micro-thermophotovoltaic," Renewable Energy, Elsevier, vol. 174(C), pages 391-402.
    2. Peng, Qingguo & Shi, Zhiwei & Xie, Bo & Huang, Zhixin & Tang, Shihao & Li, Xianhua & Huang, Haisong & E, Jiaqiang, 2023. "Optimisation of a micro-thermophotovoltaic with porous media inserted burner for electrical power improvement," Renewable Energy, Elsevier, vol. 215(C).
    3. Vasily B. Novozhilov & Boris V. Lidskii & Vladimir S. Posvyanskii, 2022. "Different Modes of Combustion Wave on a Lattice Burner," Mathematics, MDPI, vol. 10(15), pages 1-20, August.
    4. Li, Xing & Xie, Shengrong & Zhang, Jing & Li, Tao & Wang, Xiaohan, 2021. "Combustion characteristics of non-premixed CH4/CO2 jet flames in coflow air at normal and elevated temperatures," Energy, Elsevier, vol. 214(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Banerjee, Abhisek & Paul, Diplina, 2021. "Developments and applications of porous medium combustion: A recent review," Energy, Elsevier, vol. 221(C).
    2. Panigrahy, Snehasish & Mishra, Subhash C., 2018. "The combustion characteristics and performance evaluation of DME (dimethyl ether) as an alternative fuel in a two-section porous burner for domestic cooking application," Energy, Elsevier, vol. 150(C), pages 176-189.
    3. Panigrahy, Snehasish & Mishra, Niraj Kumar & Mishra, Subhash C. & Muthukumar, P., 2016. "Numerical and experimental analyses of LPG (liquefied petroleum gas) combustion in a domestic cooking stove with a porous radiant burner," Energy, Elsevier, vol. 95(C), pages 404-414.
    4. Yu, Byeonghun & Kum, Sung-Min & Lee, Chang-Eon & Lee, Seungro, 2013. "Combustion characteristics and thermal efficiency for premixed porous-media types of burners," Energy, Elsevier, vol. 53(C), pages 343-350.
    5. Ismail, Ahmad Kamal & Abdullah, Mohd Zulkifly & Zubair, Mohammed & Ahmad, Zainal Arifin & Jamaludin, Abdul Rashid & Mustafa, Khairil Faizi & Abdullah, Mohamad Nazir, 2013. "Application of porous medium burner with micro cogeneration system," Energy, Elsevier, vol. 50(C), pages 131-142.
    6. Deb, Sunita & Muthukumar, P., 2021. "Development and performance assessment of LPG operated cluster Porous Radiant Burner for commercial cooking and industrial applications," Energy, Elsevier, vol. 219(C).
    7. Sutar, Kailasnath B. & M.R., Ravi & Kohli, Sangeeta, 2016. "Design of a partially aerated naturally aspirated burner for producer gas," Energy, Elsevier, vol. 116(P1), pages 773-785.
    8. Sharma, Debojit & Lee, Bok Jik & Dash, Sukanta Kumar & Reddy, V. Mahendra, 2023. "Experimental and numerical investigation on ultra-high intensity premixed LPG- air combustion in a novel porous stack burner," Energy, Elsevier, vol. 272(C).
    9. Chen, Danan & Li, Jun & Li, Xing & Deng, Lisheng & He, Zhaohong & Huang, Hongyu & Kobayashi, Noriyuki, 2023. "Study on combustion characteristics of hydrogen addition on ammonia flame at a porous burner," Energy, Elsevier, vol. 263(PA).
    10. Liu, Fengguo & Zheng, Longfeng & Zhang, Rui, 2020. "Emissions and thermal efficiency for premixed burners in a condensing gas boiler," Energy, Elsevier, vol. 202(C).
    11. Gentillon, Philippe & Southcott, Jake & Chan, Qing N. & Taylor, Robert A., 2018. "Stable flame limits for optimal radiant performance of porous media reactors for thermophotovoltaic applications using packed beds of alumina," Applied Energy, Elsevier, vol. 229(C), pages 736-744.
    12. Vahidhosseini, Seyed Mohammad & Esfahani, Javad Abolfazli & Kim, Kyung Chun, 2020. "Cylindrical porous radiant burner with internal combustion regime: Energy saving analysis using response surface method," Energy, Elsevier, vol. 207(C).
    13. Khoshgoftar Manesh, M.H. & Rezazadeh, A. & Kabiri, S., 2020. "A feasibility study on the potential, economic, and environmental advantages of biogas production from poultry manure in Iran," Renewable Energy, Elsevier, vol. 159(C), pages 87-106.
    14. Mueller, Kyle T. & Waters, Oliver & Bubnovich, Valeri & Orlovskaya, Nina & Chen, Ruey-Hung, 2013. "Super-adiabatic combustion in Al2O3 and SiC coated porous media for thermoelectric power conversion," Energy, Elsevier, vol. 56(C), pages 108-116.
    15. Shuhao Zhang & Qian Xu & Shan Su & Shini Peng, 2022. "Influence of Surface Emissivity of Target Environment on Whole Heat Transfer of Porous Ceramics Radiant Burner," Energies, MDPI, vol. 15(18), pages 1-14, September.
    16. Maznoy, Anatoly & Kirdyashkin, Alexander & Pichugin, Nikita & Zambalov, Sergey & Petrov, Dmitry, 2020. "Development of a new infrared heater based on an annular cylindrical radiant burner for direct heating applications," Energy, Elsevier, vol. 204(C).
    17. Maznoy, Anatoly & Kirdyashkin, Alexander & Minaev, Sergey & Markov, Alexey & Pichugin, Nikita & Yakovlev, Evgeny, 2018. "A study on the effects of porous structure on the environmental and radiative characteristics of cylindrical Ni-Al burners," Energy, Elsevier, vol. 160(C), pages 399-409.
    18. Wang, Guanqing & Tang, Pengbo & Li, Yuan & Xu, Jiangrong & Durst, Franz, 2019. "Flame front stability of low calorific fuel gas combustion with preheated air in a porous burner," Energy, Elsevier, vol. 170(C), pages 1279-1288.
    19. Meng Yue & Mao-Zhao Xie & Jun-Rui Shi & Hong-Sheng Liu & Zhong-Shan Chen & Ya-Chao Chang, 2020. "Numerical and Experimental Investigations on Combustion Characteristics of Premixed Lean Methane–Air in a Staggered Arrangement Burner with Discrete Cylinders," Energies, MDPI, vol. 13(23), pages 1-13, December.
    20. Dingming Zheng & Lei Su & Haoyu Ou & Shijie Ruan, 2022. "Study on Heat Transfer Characteristics and Performance of the Full Premixed Cauldron Stove with Porous Media," Energies, MDPI, vol. 15(24), pages 1-23, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:149:y:2020:i:c:p:1040-1052. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.