IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v250y2019icp1366-1382.html
   My bibliography  Save this article

Integrated optimization with building information modeling and life cycle assessment for generating energy efficient buildings

Author

Listed:
  • Najjar, Mohammad
  • Figueiredo, Karoline
  • Hammad, Ahmed W.A.
  • Haddad, Assed

Abstract

Energy consumption in buildings is a very important issue, where the operational demand is considered to be one of the highest amongst all other sectors of an economy. Moving towards energy efficient buildings is a key factor to achieve sustainability. A novel framework for integrating mathematical optimization, Building Information Modeling, and Life Cycle Assessment to enhance the operating energy efficiency of the resulting building designs adopted, along with reducing the difficulties associated with the construction of the building, in terms of cost of construction, is developed. The framework accommodates various parameters, via integrating mathematical optimization programming, Building Information Modeling, and Life Cycle Assessment to improve the building performance, identify alternative sustainable designs, and empower the decision-making process and sustainability in the construction sector. Through the developed optimization model, the examination of various alternatives for building components that make up the envelope of a residential building is undertaken. Insights gained from the results show that all components of building envelopes influence the energy consumption in buildings, particularly, exterior walls and windows. Impacts in terms of annual energy use intensity can be reduced by about 45%, life cycle energy use and cost can be enhanced by more than 50%, and environmental impacts such as acidification and global warming potential can be reduced by more than 30%, due to use of the proposed framework. This work indicates that sustainable building decisions can be achieved by optimizing the material selection and assessment of environmental impact via Building Information Modeling and life cycle assessment.

Suggested Citation

  • Najjar, Mohammad & Figueiredo, Karoline & Hammad, Ahmed W.A. & Haddad, Assed, 2019. "Integrated optimization with building information modeling and life cycle assessment for generating energy efficient buildings," Applied Energy, Elsevier, vol. 250(C), pages 1366-1382.
  • Handle: RePEc:eee:appene:v:250:y:2019:i:c:p:1366-1382
    DOI: 10.1016/j.apenergy.2019.05.101
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261919309602
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2019.05.101?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Žigart, Maja & Kovačič Lukman, Rebeka & Premrov, Miroslav & Žegarac Leskovar, Vesna, 2018. "Environmental impact assessment of building envelope components for low-rise buildings," Energy, Elsevier, vol. 163(C), pages 501-512.
    2. Mohamad Monkiz Khasreen & Phillip F. G. Banfill & Gillian F. Menzies, 2009. "Life-Cycle Assessment and the Environmental Impact of Buildings: A Review," Sustainability, MDPI, vol. 1(3), pages 1-28, September.
    3. Eleftheriadis, Stathis & Mumovic, Dejan & Greening, Paul, 2017. "Life cycle energy efficiency in building structures: A review of current developments and future outlooks based on BIM capabilities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 811-825.
    4. Gao, Hao & Koch, Christian & Wu, Yupeng, 2019. "Building information modelling based building energy modelling: A review," Applied Energy, Elsevier, vol. 238(C), pages 320-343.
    5. Panagiotis Kontogiorgos & Nikolaos Chrysanthopoulos & George P. Papavassilopoulos, 2018. "A Mixed-Integer Programming Model for Assessing Energy-Saving Investments in Domestic Buildings under Uncertainty," Energies, MDPI, vol. 11(4), pages 1-14, April.
    6. Chen, Xi & Yang, Hongxing, 2017. "A multi-stage optimization of passively designed high-rise residential buildings in multiple building operation scenarios," Applied Energy, Elsevier, vol. 206(C), pages 541-557.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ngoc-Son Truong & Duc Long Luong & Quang Trung Nguyen, 2023. "BIM to BEM Transition for Optimizing Envelope Design Selection to Enhance Building Energy Efficiency and Cost-Effectiveness," Energies, MDPI, vol. 16(10), pages 1-24, May.
    2. Razmi, Afshin & Rahbar, Morteza & Bemanian, Mohammadreza, 2022. "PCA-ANN integrated NSGA-III framework for dormitory building design optimization: Energy efficiency, daylight, and thermal comfort," Applied Energy, Elsevier, vol. 305(C).
    3. Baoquan Cheng & Jingwei Li & Vivian W. Y. Tam & Ming Yang & Dong Chen, 2020. "A BIM-LCA Approach for Estimating the Greenhouse Gas Emissions of Large-Scale Public Buildings: A Case Study," Sustainability, MDPI, vol. 12(2), pages 1-15, January.
    4. Joanna Rucińska & Anna Komerska & Jerzy Kwiatkowski, 2020. "Preliminary Study on the GWP Benchmark of Office Buildings in Poland Using the LCA Approach," Energies, MDPI, vol. 13(13), pages 1-18, June.
    5. Yang, Sungwoong & Cho, Hyun Mi & Yun, Beom Yeol & Hong, Taehoon & Kim, Sumin, 2021. "Energy usage and cost analysis of passive thermal retrofits for low-rise residential buildings in Seoul," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    6. Filippín, Celina & Ricard, Florencia & Flores Larsen, Silvana & Santamouris, Mattheos, 2017. "Retrospective analysis of the energy consumption of single-family dwellings in central Argentina. Retrofitting and adaptation to the climate change," Renewable Energy, Elsevier, vol. 101(C), pages 1226-1241.
    7. Dixit, Manish K. & Culp, Charles H. & Fernández-Solís, Jose L., 2013. "System boundary for embodied energy in buildings: A conceptual model for definition," Renewable and Sustainable Energy Reviews, Elsevier, vol. 21(C), pages 153-164.
    8. Wang, Ran & Lu, Shilei & Feng, Wei, 2020. "A three-stage optimization methodology for envelope design of passive house considering energy demand, thermal comfort and cost," Energy, Elsevier, vol. 192(C).
    9. Hyojin Lim & Sungho Tae & Seungjun Roh, 2018. "Analysis of the Primary Building Materials in Support of G-SEED Life Cycle Assessment in South Korea," Sustainability, MDPI, vol. 10(8), pages 1-14, August.
    10. Padmanathan K. & Uma Govindarajan & Vigna K. Ramachandaramurthy & Sudar Oli Selvi T., 2017. "Multiple Criteria Decision Making (MCDM) Based Economic Analysis of Solar PV System with Respect to Performance Investigation for Indian Market," Sustainability, MDPI, vol. 9(5), pages 1-19, May.
    11. Hossein Atashbar & Esmatullah Noorzai, 2023. "Optimization of Exterior Wall Cladding Materials for Residential Buildings Using the Non-Dominated Sorting Genetic Algorithm II (NSGAII) Based on the Integration of Building Information Modeling (BIM)," Sustainability, MDPI, vol. 15(21), pages 1-20, November.
    12. Jianwu Xiong & Linlin Chen & Yin Zhang, 2023. "Building Energy Saving for Indoor Cooling and Heating: Mechanism and Comparison on Temperature Difference," Sustainability, MDPI, vol. 15(14), pages 1-20, July.
    13. Sanjin Gumbarević & Ivana Burcar Dunović & Bojan Milovanović & Mergim Gaši, 2020. "Method for Building Information Modeling Supported Project Control of Nearly Zero-Energy Building Delivery," Energies, MDPI, vol. 13(20), pages 1-21, October.
    14. Prada, A. & Gasparella, A. & Baggio, P., 2018. "On the performance of meta-models in building design optimization," Applied Energy, Elsevier, vol. 225(C), pages 814-826.
    15. Zhang, Sheng & Liu, Jun & Zhang, Xia & Wang, Fenghao, 2024. "Properly shortening design time scale of medium-deep borehole heat exchanger for high building heating performances with high computational efficiency," Energy, Elsevier, vol. 290(C).
    16. Anita Naneva & Marcella Bonanomi & Alexander Hollberg & Guillaume Habert & Daniel Hall, 2020. "Integrated BIM-Based LCA for the Entire Building Process Using an Existing Structure for Cost Estimation in the Swiss Context," Sustainability, MDPI, vol. 12(9), pages 1-17, May.
    17. Clyde Zhengdao Li & Yiqian Deng & Yingyi Ya & Vivian W. Y. Tam & Chen Lu, 2023. "Applications of Information Technology in Building Carbon Flow," Sustainability, MDPI, vol. 15(23), pages 1-23, December.
    18. Mária Moresová & Mariana Sedliačiková & Jarmila Schmidtová & Iveta Hajdúchová, 2020. "Green Development in the Construction of Family Houses in Urban and Rural Settlements in Slovakia," Sustainability, MDPI, vol. 12(11), pages 1-17, May.
    19. Yu Cao & Liyan Huang & Nur Mardhiyah Aziz & Syahrul Nizam Kamaruzzaman, 2022. "Building Information Modelling (BIM) Capabilities in the Design and Planning of Rural Settlements in China: A Systematic Review," Land, MDPI, vol. 11(10), pages 1-34, October.
    20. Cellura, Maurizio & Guarino, Francesco & Longo, Sonia & Mistretta, Marina, 2017. "Modeling the energy and environmental life cycle of buildings: A co-simulation approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 733-742.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:250:y:2019:i:c:p:1366-1382. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.