IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v210y2020ics036054422031639x.html
   My bibliography  Save this article

A fast water level optimal control method based on two stage analysis for long term power generation scheduling of hydropower station

Author

Listed:
  • He, Zhongzheng
  • Zhou, Jianzhong
  • Qin, Hui
  • Jia, Benjun
  • He, Feifei
  • Liu, Guangbiao
  • Feng, Kuaile

Abstract

water level optimal control (WLOC) has been one of the most important issues in reservoir optimal operation. To deeply understand WLOC in reservoir optimal operation, two stage analysis (TSA) of long term power generation scheduling of hydropower station (LSHS) is carried out, and the optimality condition for two stage problem of LSHS is derived with the assumption that there is no deserted outflow. Based on the idea of divide-and-conquer, a multistage problem is divided into several subproblems composed of two-stage problems. The fast water level optimal control (FWLOC) method based on TSA is proposed according to the foregoing idea. And improved FWLOC-TSA extend FWLOC-TSA with the correction strategy for deserted outflow. Then, taking Xiluodu and Three Gorges Reservoir as examples, the proposed methods are applied to solve the problem of LSHS to test their effectiveness and efficiency. Meanwhile, the dynamic programming (DP) that can obtain the optimal solution of LSHS is used for comparison in the experiments. The experimental results demonstrate that the improved FWLOC-TSA works the same as DP. Especially the mean calculation time of improved FWLOC-TSA is about 1 ms, which has a remarkable performance compared with the calculation time of DP.

Suggested Citation

  • He, Zhongzheng & Zhou, Jianzhong & Qin, Hui & Jia, Benjun & He, Feifei & Liu, Guangbiao & Feng, Kuaile, 2020. "A fast water level optimal control method based on two stage analysis for long term power generation scheduling of hydropower station," Energy, Elsevier, vol. 210(C).
  • Handle: RePEc:eee:energy:v:210:y:2020:i:c:s036054422031639x
    DOI: 10.1016/j.energy.2020.118531
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S036054422031639X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2020.118531?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wenlong Fu & Jiawen Tan & Xiaoyuan Zhang & Tie Chen & Kai Wang, 2019. "Blind Parameter Identification of MAR Model and Mutation Hybrid GWO-SCA Optimized SVM for Fault Diagnosis of Rotating Machinery," Complexity, Hindawi, vol. 2019, pages 1-17, April.
    2. Onur Hınçal & A. Altan-Sakarya & A. Metin Ger, 2011. "Optimization of Multireservoir Systems by Genetic Algorithm," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(5), pages 1465-1487, March.
    3. Wenlong Fu & Kai Wang & Jianzhong Zhou & Yanhe Xu & Jiawen Tan & Tie Chen, 2019. "A Hybrid Approach for Multi-Step Wind Speed Forecasting Based on Multi-Scale Dominant Ingredient Chaotic Analysis, KELM and Synchronous Optimization Strategy," Sustainability, MDPI, vol. 11(6), pages 1-24, March.
    4. Feng, Zhong-kai & Niu, Wen-jing & Cheng, Chun-tian & Liao, Sheng-li, 2017. "Hydropower system operation optimization by discrete differential dynamic programming based on orthogonal experiment design," Energy, Elsevier, vol. 126(C), pages 720-732.
    5. Liu Yuan & Jianzhong Zhou & Chunlong Li & Mengfei Xie & Li Mo, 2016. "Benefit and Risk Balance Optimization for Stochastic Hydropower Scheduling," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(10), pages 3347-3361, August.
    6. Jiang, Zhiqiang & Ji, Changming & Qin, Hui & Feng, Zhongkai, 2018. "Multi-stage progressive optimality algorithm and its application in energy storage operation chart optimization of cascade reservoirs," Energy, Elsevier, vol. 148(C), pages 309-323.
    7. Wang, Wenxiao & Li, Chaoshun & Liao, Xiang & Qin, Hui, 2017. "Study on unit commitment problem considering pumped storage and renewable energy via a novel binary artificial sheep algorithm," Applied Energy, Elsevier, vol. 187(C), pages 612-626.
    8. Wenlong Fu & Kai Wang & Jiawen Tan & Kaixuan Shao, 2020. "Vibration Tendency Prediction Approach for Hydropower Generator Fused with Multiscale Dominant Ingredient Chaotic Analysis, Adaptive Mutation Grey Wolf Optimizer, and KELM," Complexity, Hindawi, vol. 2020, pages 1-20, February.
    9. M. Jalali & A. Afshar & M. Mariño, 2007. "Multi-Colony Ant Algorithm for Continuous Multi-Reservoir Operation Optimization Problem," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 21(9), pages 1429-1447, September.
    10. Tan, Qiao-feng & Lei, Xiao-hui & Wen, Xin & Fang, Guo-hua & Wang, Xu & Wang, Chao & Ji, Yi & Huang, Xian-feng, 2019. "Two-stage stochastic optimal operation model for hydropower station based on the approximate utility function of the carryover stage," Energy, Elsevier, vol. 183(C), pages 670-682.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xinyu Wu & Yuan Lei & Chuntian Cheng & Qilin Ying, 2023. "An Optimal Operation Method for Parallel Hydropower Systems Combining Reservoir Level Control and Power Distribution," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(4), pages 1729-1745, March.
    2. He, Zhongzheng & Wang, Chao & Wang, Yongqiang & Wei, Bowen & Zhou, Jianzhong & Zhang, Hairong & Qin, Hui, 2021. "Dynamic programming with successive approximation and relaxation strategy for long-term joint power generation scheduling of large-scale hydropower station group," Energy, Elsevier, vol. 222(C).
    3. Liang, M.S. & Huang, G.H. & Chen, J.P. & Li, Y.P., 2022. "Development of non-deterministic energy-water-carbon nexus planning model: A case study of Shanghai, China," Energy, Elsevier, vol. 246(C).
    4. Liao, Shengli & Liu, Huan & Liu, Zhanwei & Liu, Benxi & Li, Gang & Li, Shushan, 2021. "Medium-term peak shaving operation of cascade hydropower plants considering water delay time," Renewable Energy, Elsevier, vol. 179(C), pages 406-417.
    5. Liu, Yuan & Ji, Changming & Wang, Yi & Zhang, Yanke & Jiang, Zhiqiang & Ma, Qiumei & Hou, Xiaoning, 2023. "Effect of the quality of streamflow forecasts on the operation of cascade hydropower stations using stochastic optimization models," Energy, Elsevier, vol. 273(C).
    6. Fang, Zhou & Liao, Shengli & Cheng, Chuntian & Zhao, Hongye & Liu, Benxi & Su, Huaying, 2023. "Parallel improved DPSA algorithm for medium-term optimal scheduling of large-scale cascade hydropower plants," Renewable Energy, Elsevier, vol. 210(C), pages 134-147.
    7. Yin, Linfei & Luo, Shikui & Ma, Chenxiao, 2021. "Expandable depth and width adaptive dynamic programming for economic smart generation control of smart grids," Energy, Elsevier, vol. 232(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. He, Zhongzheng & Wang, Chao & Wang, Yongqiang & Wei, Bowen & Zhou, Jianzhong & Zhang, Hairong & Qin, Hui, 2021. "Dynamic programming with successive approximation and relaxation strategy for long-term joint power generation scheduling of large-scale hydropower station group," Energy, Elsevier, vol. 222(C).
    2. He, Zhongzheng & Zhou, Jianzhong & Xie, Mengfei & Jia, Benjun & Bao, Zhengfeng & Qin, Hui & Zhang, Hairong, 2019. "Study on guaranteed output constraints in the long term joint optimal scheduling for the hydropower station group," Energy, Elsevier, vol. 185(C), pages 1210-1224.
    3. Fu, Wenlong & Zhang, Kai & Wang, Kai & Wen, Bin & Fang, Ping & Zou, Feng, 2021. "A hybrid approach for multi-step wind speed forecasting based on two-layer decomposition, improved hybrid DE-HHO optimization and KELM," Renewable Energy, Elsevier, vol. 164(C), pages 211-229.
    4. Feng, Zhong-kai & Niu, Wen-jing & Wang, Sen & Cheng, Chun-tian & Jiang, Zhi-qiang & Qin, Hui & Liu, Yi, 2018. "Developing a successive linear programming model for head-sensitive hydropower system operation considering power shortage aspect," Energy, Elsevier, vol. 155(C), pages 252-261.
    5. Zhongzheng He & Chao Wang & Yongqiang Wang & Hairong Zhang & Heng Yin, 2022. "An Efficient Optimization Method for Long-term Power Generation Scheduling of Hydropower Station: Improved Dynamic Programming with a Relaxation Strategy," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(4), pages 1481-1497, March.
    6. Jiang, Zhiqiang & Li, Rongbo & Li, Anqiang & Ji, Changming, 2018. "Runoff forecast uncertainty considered load adjustment model of cascade hydropower stations and its application," Energy, Elsevier, vol. 158(C), pages 693-708.
    7. Ming, Bo & Liu, Pan & Guo, Shenglian & Cheng, Lei & Zhang, Jingwen, 2019. "Hydropower reservoir reoperation to adapt to large-scale photovoltaic power generation," Energy, Elsevier, vol. 179(C), pages 268-279.
    8. Ziyu Ding & Guohua Fang & Xin Wen & Qiaofeng Tan & Xiaohui Lei & Zhehua Liu & Xianfeng Huang, 2020. "Cascaded Hydropower Operation Chart Optimization Balancing Overall Ecological Benefits and Ecological Conservation in Hydrological Extremes Under Climate Change," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(3), pages 1231-1246, February.
    9. Wang, Jinwen & Chen, Cheng & Liu, Shuangquan, 2018. "A new field-levelling procedure to minimize spillages in hydropower reservoir operation," Energy, Elsevier, vol. 160(C), pages 979-985.
    10. Wei Jiang & Jianzhong Zhou & Yanhe Xu & Jie Liu & Yahui Shan, 2019. "Multistep Degradation Tendency Prediction for Aircraft Engines Based on CEEMDAN Permutation Entropy and Improved Grey–Markov Model," Complexity, Hindawi, vol. 2019, pages 1-18, October.
    11. Tan, Qiao-feng & Lei, Xiao-hui & Wen, Xin & Fang, Guo-hua & Wang, Xu & Wang, Chao & Ji, Yi & Huang, Xian-feng, 2019. "Two-stage stochastic optimal operation model for hydropower station based on the approximate utility function of the carryover stage," Energy, Elsevier, vol. 183(C), pages 670-682.
    12. Feng, Zhong-kai & Niu, Wen-jing & Wang, Wen-chuan & Zhou, Jian-zhong & Cheng, Chun-tian, 2019. "A mixed integer linear programming model for unit commitment of thermal plants with peak shaving operation aspect in regional power grid lack of flexible hydropower energy," Energy, Elsevier, vol. 175(C), pages 618-629.
    13. Xinyu Wu & Yuan Lei & Chuntian Cheng & Qilin Ying, 2023. "An Optimal Operation Method for Parallel Hydropower Systems Combining Reservoir Level Control and Power Distribution," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(4), pages 1729-1745, March.
    14. Luis Montero & Antonio Bello & Javier Reneses, 2022. "A Review on the Unit Commitment Problem: Approaches, Techniques, and Resolution Methods," Energies, MDPI, vol. 15(4), pages 1-40, February.
    15. Jiang, Sufan & Gao, Shan & Pan, Guangsheng & Zhao, Xin & Liu, Yu & Guo, Yasen & Wang, Sicheng, 2020. "A novel robust security constrained unit commitment model considering HVDC regulation," Applied Energy, Elsevier, vol. 278(C).
    16. Yuhong Wang & Lei Chen & Hong Zhou & Xu Zhou & Zongsheng Zheng & Qi Zeng & Li Jiang & Liang Lu, 2021. "Flexible Transmission Network Expansion Planning Based on DQN Algorithm," Energies, MDPI, vol. 14(7), pages 1-21, April.
    17. Zhiqiang Jiang & Zhengyang Tang & Yi Liu & Yuyun Chen & Zhongkai Feng & Yang Xu & Hairong Zhang, 2019. "Area Moment and Error Based Forecasting Difficulty and its Application in Inflow Forecasting Level Evaluation," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(13), pages 4553-4568, October.
    18. Acikgoz, Hakan & Budak, Umit & Korkmaz, Deniz & Yildiz, Ceyhun, 2021. "WSFNet: An efficient wind speed forecasting model using channel attention-based densely connected convolutional neural network," Energy, Elsevier, vol. 233(C).
    19. Toufani, Parinaz & Nadar, Emre & Kocaman, Ayse Selin, 2022. "Short-term assessment of pumped hydro energy storage configurations: Up, down, or closed?," Renewable Energy, Elsevier, vol. 201(P1), pages 1086-1095.
    20. Wang, Jin & Zhao, Zhipeng & Zhou, Jinglin & Cheng, Chuntian & Su, Huaying, 2024. "Developing operating rules for a hydro–wind–solar hybrid system considering peak-shaving demands," Applied Energy, Elsevier, vol. 360(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:210:y:2020:i:c:s036054422031639x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.