IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v246y2022ics0360544222002031.html
   My bibliography  Save this article

Development of non-deterministic energy-water-carbon nexus planning model: A case study of Shanghai, China

Author

Listed:
  • Liang, M.S.
  • Huang, G.H.
  • Chen, J.P.
  • Li, Y.P.

Abstract

Energy, water and carbon are closely intertwined. The conflicts among increasing energy demand, declining water resource and tightening emission target have put tremendous pressures on the regional sustainable development, particularly for the metropolitan areas. This study aims at developing an integrated modelling system for supporting the energy-water-carbon nexus system planning in Shanghai. A variety of policy scenarios associated with carbon emission cap and renewable power ratio under multiple uncertainties are examined. To deal with uncertainties expressed as interval values and probability distributions in the nexus system, a mixed-integer interval chance-constrained two-stage stochastic programming method is developed. The obtained results disclose that the electricity generation scheme and the power mix would gradually transit from a high water-intensity and fossil-fuel dominated structure to a low water-intensity and renewable-energy based one over the planning period (2021–2035). Compared with the business-as-usual scenario, peak carbon emissions would decrease by [5.48, 9.26] × 106t under introduction of the emission cap constraint. These findings would address the issue of the tradeoff between economic objective and system sustainability, and thus provide reasonable insights into the coordinated planning and management of the energy-water-carbon nexus system.

Suggested Citation

  • Liang, M.S. & Huang, G.H. & Chen, J.P. & Li, Y.P., 2022. "Development of non-deterministic energy-water-carbon nexus planning model: A case study of Shanghai, China," Energy, Elsevier, vol. 246(C).
  • Handle: RePEc:eee:energy:v:246:y:2022:i:c:s0360544222002031
    DOI: 10.1016/j.energy.2022.123300
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544222002031
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2022.123300?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. He, Zhongzheng & Zhou, Jianzhong & Qin, Hui & Jia, Benjun & He, Feifei & Liu, Guangbiao & Feng, Kuaile, 2020. "A fast water level optimal control method based on two stage analysis for long term power generation scheduling of hydropower station," Energy, Elsevier, vol. 210(C).
    2. Huang, G. H. & Baetz, B. W. & Patry, G. G., 1995. "Grey fuzzy integer programming: An application to regional waste management planning under uncertainty," Socio-Economic Planning Sciences, Elsevier, vol. 29(1), pages 17-38, March.
    3. Yang, Yun & Zhang, Shijie & Xiao, Yunhan, 2015. "An MILP (mixed integer linear programming) model for optimal design of district-scale distributed energy resource systems," Energy, Elsevier, vol. 90(P2), pages 1901-1915.
    4. Huang, Weilong & Ma, Ding & Chen, Wenying, 2017. "Connecting water and energy: Assessing the impacts of carbon and water constraints on China’s power sector," Applied Energy, Elsevier, vol. 185(P2), pages 1497-1505.
    5. Lin, Q.G. & Huang, G.H., 2010. "An inexact two-stage stochastic energy systems planning model for managing greenhouse gas emission at a municipal level," Energy, Elsevier, vol. 35(5), pages 2270-2280.
    6. Li, M.W. & Li, Y.P. & Huang, G.H., 2011. "An interval-fuzzy two-stage stochastic programming model for planning carbon dioxide trading under uncertainty," Energy, Elsevier, vol. 36(9), pages 5677-5689.
    7. Lohrmann, Alena & Child, Michael & Breyer, Christian, 2021. "Assessment of the water footprint for the European power sector during the transition towards a 100% renewable energy system," Energy, Elsevier, vol. 233(C).
    8. Pan, Guangsheng & Gu, Wei & Qiu, Haifeng & Lu, Yuping & Zhou, Suyang & Wu, Zhi, 2020. "Bi-level mixed-integer planning for electricity-hydrogen integrated energy system considering levelized cost of hydrogen," Applied Energy, Elsevier, vol. 270(C).
    9. Liu, J. & Nie, S. & Shan, B.G. & Li, Y.P. & Huang, G.H. & Liu, Z.P., 2019. "Development of an interval-credibility-chance constrained energy-water nexus system planning model—a case study of Xiamen, China," Energy, Elsevier, vol. 181(C), pages 677-693.
    10. Jia, Zhijie & Lin, Boqiang, 2021. "How to achieve the first step of the carbon-neutrality 2060 target in China: The coal substitution perspective," Energy, Elsevier, vol. 233(C).
    11. Huang, Guo H. & Baetz, Brian W. & Patry, Gilles G., 1995. "Grey integer programming: An application to waste management planning under uncertainty," European Journal of Operational Research, Elsevier, vol. 83(3), pages 594-620, June.
    12. Cao, R. & Huang, G.H. & Chen, J.P. & Li, Y.P. & He, C.Y., 2021. "A chance-constrained urban agglomeration energy model for cooperative carbon emission management," Energy, Elsevier, vol. 223(C).
    13. Yu, L. & Li, Y.P. & Huang, G.H., 2019. "Planning municipal-scale mixed energy system for stimulating renewable energy under multiple uncertainties - The City of Qingdao in Shandong Province, China," Energy, Elsevier, vol. 166(C), pages 1120-1133.
    14. Xie, Y.L. & Li, Y.P. & Huang, G.H. & Li, Y.F., 2010. "An interval fixed-mix stochastic programming method for greenhouse gas mitigation in energy systems under uncertainty," Energy, Elsevier, vol. 35(12), pages 4627-4644.
    15. Suo, C. & Li, Y.P. & Mei, H. & Lv, J. & Sun, J. & Nie, S., 2021. "Towards sustainability for China's energy system through developing an energy-climate-water nexus model," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Cheng, Yang & Jin, Lei & Fu, Haiyan & Fan, Yurui & Bai, Ruolin & Wei, Yi, 2024. "Investigating the impact of climate change and policy orientation on energy–carbon–water nexus under multi-criteria analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    2. Zhang, S.Q. & Li, Y.P. & Huang, G.H. & Ding, Y.K. & Yang, X., 2023. "Developing a copula-based input-output method for analyzing energy-water nexus of Tajikistan," Energy, Elsevier, vol. 266(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dong, C. & Huang, G.H. & Cai, Y.P. & Liu, Y., 2012. "An inexact optimization modeling approach for supporting energy systems planning and air pollution mitigation in Beijing city," Energy, Elsevier, vol. 37(1), pages 673-688.
    2. Chen, Yizhong & Lu, Hongwei & Li, Jing & Huang, Guohe & He, Li, 2016. "Regional planning of new-energy systems within multi-period and multi-option contexts: A case study of Fengtai, Beijing, China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 356-372.
    3. Gaiqiang Yang & Ping Guo & Mo Li & Shiqi Fang & Liudong Zhang, 2016. "An Improved Solving Approach for Interval-Parameter Programming and Application to an Optimal Allocation of Irrigation Water Problem," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(2), pages 701-729, January.
    4. Li, M.W. & Li, Y.P. & Huang, G.H., 2011. "An interval-fuzzy two-stage stochastic programming model for planning carbon dioxide trading under uncertainty," Energy, Elsevier, vol. 36(9), pages 5677-5689.
    5. Zhu, Y. & Li, Y.P. & Huang, G.H. & Fu, D.Z., 2013. "Modeling for planning municipal electric power systems associated with air pollution control – A case study of Beijing," Energy, Elsevier, vol. 60(C), pages 168-186.
    6. Gaiqiang Yang & Ping Guo & Mo Li & Shiqi Fang & Liudong Zhang, 2016. "An Improved Solving Approach for Interval-Parameter Programming and Application to an Optimal Allocation of Irrigation Water Problem," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(2), pages 701-729, January.
    7. Zhu, Y. & Wei, Z. & Li, Y.X. & Du, H.X. & Guo, Y., 2022. "Energy and atmosphere system planning of coal-dependent cities based on an interval minimax-regret coupled joint-probabilistic cost-benefit approach," Energy, Elsevier, vol. 239(PB).
    8. Piao, M.J. & Li, Y.P. & Huang, G.H. & Nie, S., 2015. "Risk analysis for Shanghai's electric power system under multiple uncertainties," Energy, Elsevier, vol. 87(C), pages 104-119.
    9. Li, Y.P. & Huang, G.H. & Chen, X., 2011. "An interval-valued minimax-regret analysis approach for the identification of optimal greenhouse-gas abatement strategies under uncertainty," Energy Policy, Elsevier, vol. 39(7), pages 4313-4324, July.
    10. Chunguang Bai & Joseph Sarkis, 2013. "Green information technology strategic justification and evaluation," Information Systems Frontiers, Springer, vol. 15(5), pages 831-847, November.
    11. Yong Zeng & Yanpeng Cai & Guohe Huang & Jing Dai, 2011. "A Review on Optimization Modeling of Energy Systems Planning and GHG Emission Mitigation under Uncertainty," Energies, MDPI, vol. 4(10), pages 1-33, October.
    12. Lin, Q.G. & Huang, G.H., 2009. "A dynamic inexact energy systems planning model for supporting greenhouse-gas emission management and sustainable renewable energy development under uncertainty--A case study for the City of Waterloo,," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(8), pages 1836-1853, October.
    13. Niknam, Taher & Narimani, Mohammad rasoul & Jabbari, Masoud & Malekpour, Ahmad Reza, 2011. "A modified shuffle frog leaping algorithm for multi-objective optimal power flow," Energy, Elsevier, vol. 36(11), pages 6420-6432.
    14. Zhao, Yuhuan & Shi, Qiaoling & li, Hao & Qian, Zhiling & Zheng, Lu & Wang, Song & He, Yizhang, 2022. "Simulating the economic and environmental effects of integrated policies in energy-carbon-water nexus of China," Energy, Elsevier, vol. 238(PA).
    15. Cao, M.F. & Huang, G.H. & Lin, Q.G., 2010. "Integer programming with random-boundary intervals for planning municipal power systems," Applied Energy, Elsevier, vol. 87(8), pages 2506-2516, August.
    16. Tian, Chuyin & Huang, Guohe & Xie, Yulei, 2021. "Systematic evaluation for hydropower exploitation rationality in hydro-dominant area: A case study of Sichuan Province, China," Renewable Energy, Elsevier, vol. 168(C), pages 1096-1111.
    17. Zhou, Feng & Huang, Gordon H. & Chen, Guo-Xian & Guo, Huai-Cheng, 2009. "Enhanced-interval linear programming," European Journal of Operational Research, Elsevier, vol. 199(2), pages 323-333, December.
    18. Hu, Qing & Huang, Guohe & Cai, Yanpeng & Huang, Ying, 2011. "Feasibility-based inexact fuzzy programming for electric power generation systems planning under dual uncertainties," Applied Energy, Elsevier, vol. 88(12), pages 4642-4654.
    19. Xu, Y. & Huang, G.H. & Qin, X.S. & Cao, M.F., 2009. "SRCCP: A stochastic robust chance-constrained programming model for municipal solid waste management under uncertainty," Resources, Conservation & Recycling, Elsevier, vol. 53(6), pages 352-363.
    20. Maqsood, Imran & Huang, Guo H. & Scott Yeomans, Julian, 2005. "An interval-parameter fuzzy two-stage stochastic program for water resources management under uncertainty," European Journal of Operational Research, Elsevier, vol. 167(1), pages 208-225, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:246:y:2022:i:c:s0360544222002031. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.