IDEAS home Printed from https://ideas.repec.org/a/hin/complx/3264969.html
   My bibliography  Save this article

Blind Parameter Identification of MAR Model and Mutation Hybrid GWO-SCA Optimized SVM for Fault Diagnosis of Rotating Machinery

Author

Listed:
  • Wenlong Fu
  • Jiawen Tan
  • Xiaoyuan Zhang
  • Tie Chen
  • Kai Wang

Abstract

As a crucial and widely used component in industrial fields with great complexity, the health condition of rotating machinery is directly related to production efficiency and safety. Consequently, recognizing and diagnosing rotating machine faults remain to be one of the main concerns in preventing failures of mechanical systems, which can enhance the reliability and efficiency of mechanical systems. In this paper, a novel approach based on blind parameter identification of MAR model and mutation hybrid GWO-SCA optimization is proposed to diagnose faults for rotating machinery. Signals collected from different types of faults were firstly split into sets of intrinsic mode functions (IMFs) by variational mode decomposition (VMD), the decomposing mode number K of which was preset with central frequency observation method. Then the multivariate autoregressive (MAR) model of all IMFs was established, whose order was determined by Schwartz Bayes Criterion (SBC), and all parameters of the model were identified blindly through QR decomposition, where key features were subsequently extracted via principal component analysis (PCA) to construct feature vectors of different fault types. Afterwards, a hybrid optimization algorithm combining mutation operator, grey wolf optimizer (GWO), and sine cosine algorithm (SCA), termed mutation hybrid GWO-SCA (MHGWOSCA), was proposed for parameter selection of support vector machine (SVM). The optimal SVM model was later employed to classify different fault samples. The engineering application and contrastive analysis indicate the availability and superiority of the proposed method.

Suggested Citation

  • Wenlong Fu & Jiawen Tan & Xiaoyuan Zhang & Tie Chen & Kai Wang, 2019. "Blind Parameter Identification of MAR Model and Mutation Hybrid GWO-SCA Optimized SVM for Fault Diagnosis of Rotating Machinery," Complexity, Hindawi, vol. 2019, pages 1-17, April.
  • Handle: RePEc:hin:complx:3264969
    DOI: 10.1155/2019/3264969
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/8503/2019/3264969.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/8503/2019/3264969.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2019/3264969?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Chu Zhang & Tian Peng & Chaoshun Li & Wenlong Fu & Xin Xia & Xiaoming Xue, 2019. "Multiobjective Optimization of a Fractional-Order PID Controller for Pumped Turbine Governing System Using an Improved NSGA-III Algorithm under Multiworking Conditions," Complexity, Hindawi, vol. 2019, pages 1-18, February.
    2. Wenlong Fu & Kai Wang & Jianzhong Zhou & Yanhe Xu & Jiawen Tan & Tie Chen, 2019. "A Hybrid Approach for Multi-Step Wind Speed Forecasting Based on Multi-Scale Dominant Ingredient Chaotic Analysis, KELM and Synchronous Optimization Strategy," Sustainability, MDPI, vol. 11(6), pages 1-24, March.
    3. Rui Yuan & Yong Lv & Gangbing Song, 2018. "Fault Diagnosis of Rolling Bearing Based on a Novel Adaptive High-Order Local Projection Denoising Method," Complexity, Hindawi, vol. 2018, pages 1-15, October.
    4. Changming Liu & Di Zhou & Zhigang Wang & Dan Yang & Gangbing Song, 2018. "Damage Detection of Refractory Based on Principle Component Analysis and Gaussian Mixture Model," Complexity, Hindawi, vol. 2018, pages 1-9, January.
    5. Dongjie Zhong & Cancan Yi & Han Xiao & Houzhuang Zhang & Anding Wu, 2018. "A Novel Fault Diagnosis Method for Rolling Bearing Based on Improved Sparse Regularization via Convex Optimization," Complexity, Hindawi, vol. 2018, pages 1-10, July.
    6. Hongmei Liu & Jiayao Jing & Jian Ma, 2018. "Fault Diagnosis of Electromechanical Actuator Based on VMD Multifractal Detrended Fluctuation Analysis and PNN," Complexity, Hindawi, vol. 2018, pages 1-11, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jiawei Ye & Wei Zeng & Zhigao Zhao & Jiebin Yang & Jiandong Yang, 2020. "Optimization of Pump Turbine Closing Operation to Minimize Water Hammer and Pulsating Pressures During Load Rejection," Energies, MDPI, vol. 13(4), pages 1-18, February.
    2. Wei Jiang & Jianzhong Zhou & Yanhe Xu & Jie Liu & Yahui Shan, 2019. "Multistep Degradation Tendency Prediction for Aircraft Engines Based on CEEMDAN Permutation Entropy and Improved Grey–Markov Model," Complexity, Hindawi, vol. 2019, pages 1-18, October.
    3. He, Zhongzheng & Zhou, Jianzhong & Qin, Hui & Jia, Benjun & He, Feifei & Liu, Guangbiao & Feng, Kuaile, 2020. "A fast water level optimal control method based on two stage analysis for long term power generation scheduling of hydropower station," Energy, Elsevier, vol. 210(C).
    4. Fu, Wenlong & Zhang, Kai & Wang, Kai & Wen, Bin & Fang, Ping & Zou, Feng, 2021. "A hybrid approach for multi-step wind speed forecasting based on two-layer decomposition, improved hybrid DE-HHO optimization and KELM," Renewable Energy, Elsevier, vol. 164(C), pages 211-229.
    5. Akash Saxena & Ahmad M. Alshamrani & Adel Fahad Alrasheedi & Khalid Abdulaziz Alnowibet & Ali Wagdy Mohamed, 2022. "A Hybrid Approach Based on Principal Component Analysis for Power Quality Event Classification Using Support Vector Machines," Mathematics, MDPI, vol. 10(15), pages 1-16, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Acikgoz, Hakan & Budak, Umit & Korkmaz, Deniz & Yildiz, Ceyhun, 2021. "WSFNet: An efficient wind speed forecasting model using channel attention-based densely connected convolutional neural network," Energy, Elsevier, vol. 233(C).
    2. Zou, Yidong & Hu, Wenqing & Xiao, Zhihuai & Wang, Yunhe & Chen, Jinbao & Zheng, Yang & Qian, Jing & Zeng, Yun, 2023. "Design of intelligent nonlinear robust controller for hydro-turbine governing system based on state-dynamic-measurement hybrid feedback linearization method," Renewable Energy, Elsevier, vol. 204(C), pages 635-651.
    3. Li, Chaoshun & Tang, Geng & Xue, Xiaoming & Chen, Xinbiao & Wang, Ruoheng & Zhang, Chu, 2020. "The short-term interval prediction of wind power using the deep learning model with gradient descend optimization," Renewable Energy, Elsevier, vol. 155(C), pages 197-211.
    4. He, Feifei & Zhou, Jianzhong & Mo, Li & Feng, Kuaile & Liu, Guangbiao & He, Zhongzheng, 2020. "Day-ahead short-term load probability density forecasting method with a decomposition-based quantile regression forest," Applied Energy, Elsevier, vol. 262(C).
    5. Peng, Tian & Zhang, Chu & Zhou, Jianzhong & Nazir, Muhammad Shahzad, 2021. "An integrated framework of Bi-directional long-short term memory (BiLSTM) based on sine cosine algorithm for hourly solar radiation forecasting," Energy, Elsevier, vol. 221(C).
    6. Dong, Wenhui & Cao, Zezhou & Zhao, Pengchong & Yang, Zhenbiao & Yuan, Yichen & Zhao, Ziwen & Chen, Diyi & Wu, Yajun & Xu, Beibei & Venkateshkumar, M., 2023. "A segmented optimal PID method to consider both regulation performance and damping characteristic of hydroelectric power system," Renewable Energy, Elsevier, vol. 207(C), pages 1-12.
    7. Qiang Hua & Chunru Dong & Feng Zhang, 2018. "A Novel Approach to Face Verification Based on Second-Order Face-Pair Representation," Complexity, Hindawi, vol. 2018, pages 1-10, June.
    8. Tian Peng & Chu Zhang & Jianzhong Zhou, 2019. "Intra- and Inter-Annual Variability of Hydrometeorological Variables in the Jinsha River Basin, Southwest China," Sustainability, MDPI, vol. 11(19), pages 1-17, September.
    9. Xihui Chen & Liping Peng & Gang Cheng & Chengming Luo, 2019. "Research on Degradation State Recognition of Planetary Gear Based on Multiscale Information Dimension of SSD and CNN," Complexity, Hindawi, vol. 2019, pages 1-12, March.
    10. He, Zhongzheng & Zhou, Jianzhong & Qin, Hui & Jia, Benjun & He, Feifei & Liu, Guangbiao & Feng, Kuaile, 2020. "A fast water level optimal control method based on two stage analysis for long term power generation scheduling of hydropower station," Energy, Elsevier, vol. 210(C).
    11. Chen, Xiang & Ding, Kun & Zhang, Jingwei & Han, Wei & Liu, Yongjie & Yang, Zenan & Weng, Shuai, 2022. "Online prediction of ultra-short-term photovoltaic power using chaotic characteristic analysis, improved PSO and KELM," Energy, Elsevier, vol. 248(C).
    12. He, Zhongzheng & Wang, Chao & Wang, Yongqiang & Wei, Bowen & Zhou, Jianzhong & Zhang, Hairong & Qin, Hui, 2021. "Dynamic programming with successive approximation and relaxation strategy for long-term joint power generation scheduling of large-scale hydropower station group," Energy, Elsevier, vol. 222(C).
    13. Wei Jiang & Jianzhong Zhou & Yanhe Xu & Jie Liu & Yahui Shan, 2019. "Multistep Degradation Tendency Prediction for Aircraft Engines Based on CEEMDAN Permutation Entropy and Improved Grey–Markov Model," Complexity, Hindawi, vol. 2019, pages 1-18, October.
    14. Yonggang Li & Jinjiao Hou & Juan Gu & Chaoshun Li & Yanhe Xu, 2022. "Dynamic Characteristics and Successive Start-Up Control Strategy Optimization of Pumped Storage Units under Low-Head Extreme Conditions," Energies, MDPI, vol. 15(15), pages 1-19, July.
    15. Tian Peng & Chu Zhang & Jianzhong Zhou & Xin Xia & Xiaoming Xue, 2019. "Multi-Objective Optimization for Flood Interval Prediction Based on Orthogonal Chaotic NSGA-II and Kernel Extreme Learning Machine," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(14), pages 4731-4748, November.
    16. Fu, Wenlong & Zhang, Kai & Wang, Kai & Wen, Bin & Fang, Ping & Zou, Feng, 2021. "A hybrid approach for multi-step wind speed forecasting based on two-layer decomposition, improved hybrid DE-HHO optimization and KELM," Renewable Energy, Elsevier, vol. 164(C), pages 211-229.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:complx:3264969. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.