IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v210y2023icp134-147.html
   My bibliography  Save this article

Parallel improved DPSA algorithm for medium-term optimal scheduling of large-scale cascade hydropower plants

Author

Listed:
  • Fang, Zhou
  • Liao, Shengli
  • Cheng, Chuntian
  • Zhao, Hongye
  • Liu, Benxi
  • Su, Huaying

Abstract

Medium-term optimal scheduling of hydropower plants (MOSHPP) should be frequently updated for recurring extreme precipitation events in China to reduce spillage and increase power generation; however, the curse of dimensionality makes obtaining a satisfactory solution in an acceptable time difficult. In this paper, a parallel improved dynamic programming with successive approximation (PIDPSA) for MOSHPPs is proposed to improve the solution quality and meet time requirements. The solution quality is improved by successive approximation of multiple plants instead of one plant for considering more hydraulic connections, a state space reduction strategy combined with constraint preprocessing is adopted to reduce unnecessary calculations and the fine-grained parallelism based on the fork/join framework is employed to greatly shorten the solution time. The proposed method was applied to 11 hydropower cascade plants in the Lancang River with a time horizon of 30 days. The results showed that higher quality solutions can be obtained by IDPSA than conventional methods and DPSA, and the space reduction strategy can effectively improve the solution efficiency. The computation time of PIDPSA decreased from 81345 s for the single-core environment to 6073 s for the 32-core environment, which proves the high efficiency and practical value of PIDPSA for solving MOSHPP problems.

Suggested Citation

  • Fang, Zhou & Liao, Shengli & Cheng, Chuntian & Zhao, Hongye & Liu, Benxi & Su, Huaying, 2023. "Parallel improved DPSA algorithm for medium-term optimal scheduling of large-scale cascade hydropower plants," Renewable Energy, Elsevier, vol. 210(C), pages 134-147.
  • Handle: RePEc:eee:renene:v:210:y:2023:i:c:p:134-147
    DOI: 10.1016/j.renene.2023.04.069
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148123005207
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2023.04.069?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Nobuyuki Utsumi & Hyungjun Kim, 2022. "Observed influence of anthropogenic climate change on tropical cyclone heavy rainfall," Nature Climate Change, Nature, vol. 12(5), pages 436-440, May.
    2. Rashid, Muhammad Usman & Abid, Irfan & Latif, Abid, 2022. "Optimization of hydropower and related benefits through Cascade Reservoirs for sustainable economic growth," Renewable Energy, Elsevier, vol. 185(C), pages 241-254.
    3. Shengli Liao & Jie Liu & Benxi Liu & Chuntian Cheng & Lingan Zhou & Huijun Wu, 2020. "Multicore Parallel Dynamic Programming Algorithm for Short-Term Hydro-Unit Load Dispatching of Huge Hydropower Stations Serving Multiple Power Grids," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(1), pages 359-376, January.
    4. Ramesh Teegavarapu & Slobodan Simonovic, 2002. "Optimal Operation of Reservoir Systems using Simulated Annealing," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 16(5), pages 401-428, October.
    5. He, Zhongzheng & Wang, Chao & Wang, Yongqiang & Wei, Bowen & Zhou, Jianzhong & Zhang, Hairong & Qin, Hui, 2021. "Dynamic programming with successive approximation and relaxation strategy for long-term joint power generation scheduling of large-scale hydropower station group," Energy, Elsevier, vol. 222(C).
    6. He, Zhongzheng & Zhou, Jianzhong & Qin, Hui & Jia, Benjun & He, Feifei & Liu, Guangbiao & Feng, Kuaile, 2020. "A fast water level optimal control method based on two stage analysis for long term power generation scheduling of hydropower station," Energy, Elsevier, vol. 210(C).
    7. Yufei Ma & Ping-an Zhong & Bin Xu & Feilin Zhu & Yao Xiao & Qingwen Lu, 2020. "Multidimensional Parallel Dynamic Programming Algorithm Based on Spark for Large-Scale Hydropower Systems," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(11), pages 3427-3444, September.
    8. Wang, Peilin & Yuan, Wenlin & Su, Chengguo & Wu, Yang & Lu, Lu & Yan, Denghua & Wu, Zening, 2022. "Short-term optimal scheduling of cascade hydropower plants shaving peak load for multiple power grids," Renewable Energy, Elsevier, vol. 184(C), pages 68-79.
    9. Oscar Guzman & Haiyan Jiang, 2021. "Global increase in tropical cyclone rain rate," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
    10. Liu, Benxi & Cheng, Chuntian & Wang, Sen & Liao, Shengli & Chau, Kwok-Wing & Wu, Xinyu & Li, Weidong, 2018. "Parallel chance-constrained dynamic programming for cascade hydropower system operation," Energy, Elsevier, vol. 165(PA), pages 752-767.
    11. Hatamkhani, Amir & Moridi, Ali & Yazdi, Jafar, 2020. "A simulation – Optimization models for multi-reservoir hydropower systems design at watershed scale," Renewable Energy, Elsevier, vol. 149(C), pages 253-263.
    12. Li Sun & Xiaoyu Zhou & Alun Gu, 2022. "Effects of Climate Change on Hydropower Generation in China Based on a WEAP Model," Sustainability, MDPI, vol. 14(9), pages 1-14, May.
    13. Yufei Ma & Ping-an Zhong & Bin Xu & Feilin Zhu & Jieyu Li & Han Wang & Qingwen Lu, 2021. "Cloud-Based Multidimensional Parallel Dynamic Programming Algorithm for a Cascade Hydropower System," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(9), pages 2705-2721, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhao, Hongye & Liao, Shengli & Fang, Zhou & Liu, Benxi & Ma, Xiangyu & Lu, Jia, 2024. "Short-term peak-shaving operation of “N-reservoirs and multicascade” large-scale hydropower systems based on a decomposition-iteration strategy," Energy, Elsevier, vol. 288(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liao, Shengli & Liu, Huan & Liu, Benxi & Liu, Tian & Li, Chonghao & Su, Huaying, 2023. "Solution framework for short-term cascade hydropower system optimization operations based on the load decomposition strategy," Energy, Elsevier, vol. 277(C).
    2. Shuo Huang & Xinyu Wu & Yiyang Wu & Zheng Zhang, 2023. "Mid-Term Optimal Scheduling of Low-Head Cascaded Hydropower Stations Considering Inflow Unevenness," Energies, MDPI, vol. 16(17), pages 1-13, September.
    3. Zhao, Hongye & Liao, Shengli & Fang, Zhou & Liu, Benxi & Ma, Xiangyu & Lu, Jia, 2024. "Short-term peak-shaving operation of “N-reservoirs and multicascade” large-scale hydropower systems based on a decomposition-iteration strategy," Energy, Elsevier, vol. 288(C).
    4. Liao, Shengli & Liu, Huan & Liu, Zhanwei & Liu, Benxi & Li, Gang & Li, Shushan, 2021. "Medium-term peak shaving operation of cascade hydropower plants considering water delay time," Renewable Energy, Elsevier, vol. 179(C), pages 406-417.
    5. Liu, Benxi & Liu, Tengyuan & Liao, Shengli & Wang, Haidong & Jin, Xiaoyu, 2023. "Short-term operation of cascade hydropower system sharing flexibility via high voltage direct current lines for multiple grids peak shaving," Renewable Energy, Elsevier, vol. 213(C), pages 11-29.
    6. Yin, Linfei & Luo, Shikui & Ma, Chenxiao, 2021. "Expandable depth and width adaptive dynamic programming for economic smart generation control of smart grids," Energy, Elsevier, vol. 232(C).
    7. Su, Chengguo & Wang, Peilin & Yuan, Wenlin & Wu, Yang & Jiang, Feng & Wu, Zening & Yan, Denghua, 2022. "Short-term optimal scheduling of cascade hydropower plants with reverse-regulating effects," Renewable Energy, Elsevier, vol. 199(C), pages 395-406.
    8. Wu, Xinyu & Wu, Yiyang & Cheng, Xilong & Cheng, Chuntian & Li, Zehong & Wu, Yongqi, 2023. "A mixed-integer linear programming model for hydro unit commitment considering operation constraint priorities," Renewable Energy, Elsevier, vol. 204(C), pages 507-520.
    9. Lu, Na & Wang, Guangyan & Su, Chengguo & Ren, Zaimin & Peng, Xiaoyue & Sui, Quan, 2024. "Medium- and long-term interval optimal scheduling of cascade hydropower-photovoltaic complementary systems considering multiple uncertainties," Applied Energy, Elsevier, vol. 353(PA).
    10. Xinyu Wu & Ruixiang Cheng & Chuntian Cheng, 2022. "A Simplified Solution Method for End-of-Term Storage Energy Maximization Model of Cascaded Reservoirs," Energies, MDPI, vol. 15(12), pages 1-18, June.
    11. Amir Hatamkhani & Mojtaba Shourian & Ali Moridi, 2021. "Optimal Design and Operation of a Hydropower Reservoir Plant Using a WEAP-Based Simulation–Optimization Approach," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(5), pages 1637-1652, March.
    12. Xinyu Wu & Yuan Lei & Chuntian Cheng & Qilin Ying, 2023. "An Optimal Operation Method for Parallel Hydropower Systems Combining Reservoir Level Control and Power Distribution," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(4), pages 1729-1745, March.
    13. Lianjie Qin & Laiyin Zhu & Baoyin Liu & Zixuan Li & Yugang Tian & Gordon Mitchell & Shifei Shen & Wei Xu & Jianguo Chen, 2024. "Global expansion of tropical cyclone precipitation footprint," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    14. Chuanxiong Kang & Cheng Chen & Jinwen Wang, 2018. "An Efficient Linearization Method for Long-Term Operation of Cascaded Hydropower Reservoirs," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(10), pages 3391-3404, August.
    15. Wang, Jin & Zhao, Zhipeng & Zhou, Jinglin & Cheng, Chuntian & Su, Huaying, 2024. "Developing operating rules for a hydro–wind–solar hybrid system considering peak-shaving demands," Applied Energy, Elsevier, vol. 360(C).
    16. Joseph L.-H. Tsui & Rosario Evans Pena & Monika Moir & Rhys P. D. Inward & Eduan Wilkinson & James Emmanuel San & Jenicca Poongavanan & Sumali Bajaj & Bernardo Gutierrez & Abhishek Dasgupta & Tulio Ol, 2024. "Impacts of climate change-related human migration on infectious diseases," Nature Climate Change, Nature, vol. 14(8), pages 793-802, August.
    17. K. Ramakrishnan & C. Suribabu & T. Neelakantan, 2010. "Crop Calendar Adjustment Study for Sathanur Irrigation System in India Using Genetic Algorithm," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(14), pages 3835-3851, November.
    18. Ludovic Gaudard & Jeannette Gabbi & Andreas Bauder & Franco Romerio, 2016. "Long-term Uncertainty of Hydropower Revenue Due to Climate Change and Electricity Prices," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(4), pages 1325-1343, March.
    19. Arya Yaghoubzadeh-Bavandpour & Omid Bozorg-Haddad & Mohammadreza Rajabi & Babak Zolghadr-Asli & Xuefeng Chu, 2022. "Application of Swarm Intelligence and Evolutionary Computation Algorithms for Optimal Reservoir Operation," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(7), pages 2275-2292, May.
    20. Xu, Xiao & Hu, Weihao & Du, Yuefang & Liu, Wen & Liu, Zhou & Huang, Qi & Chen, Zhe, 2020. "Robust chance-constrained gas management for a standalone gas supply system based on wind energy," Energy, Elsevier, vol. 212(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:210:y:2023:i:c:p:134-147. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.