IDEAS home Printed from https://ideas.repec.org/a/gam/jresou/v11y2022i8p75-d880751.html
   My bibliography  Save this article

Plant Biomass Conversion to Vehicle Liquid Fuel as a Path to Sustainability

Author

Listed:
  • Aleksandr Ketov

    (Department of Environmental Protection, Perm National Research Polytechnic University, Prof. Pozdeev Str. 14, 614990 Perm, Russia)

  • Natalia Sliusar

    (Department of Environmental Protection, Perm National Research Polytechnic University, Prof. Pozdeev Str. 14, 614990 Perm, Russia)

  • Anna Tsybina

    (Department of Environmental Protection, Perm National Research Polytechnic University, Prof. Pozdeev Str. 14, 614990 Perm, Russia)

  • Iurii Ketov

    (Department of Environmental Protection, Perm National Research Polytechnic University, Prof. Pozdeev Str. 14, 614990 Perm, Russia)

  • Sergei Chudinov

    (Bumatica Ltd., Bratskaya Str. 139, 614089 Perm, Russia)

  • Marina Krasnovskikh

    (Department of Inorganic Chemistry, Chemical Technology and Technosphere Safety, Perm State National Research University, Bukireva Str. 15, 614068 Perm, Russia)

  • Vladimir Bosnic

    (Research Center RTPlast LLC, Nizhnyaya Pervomayskaya Str. 64, 105203 Moscow, Russia)

Abstract

Biofuel such as linseed oil has an energy potential of 48.8 MJ/kg, which is much lower than fossil diesel fuel 57.14 MJ/kg. Existing biofuels need to increase the energy potential for use in traditional engines. Moreover, biofuel production demands cheap feedstock, for example, sawdust. The present paper shows that the technology to synthesize high-energy liquid vehicle fuels with a gross calorific value up to 53.6 MJ/kg from renewable sources of plant origin is possible. Slow pyrolysis was used to produce high-energy biofuel from sawdust and linseed oil. The proposed approach will allow not only to preserve the existing high-tech energy sources of high unit capacity based on the combustion of liquid fuels, but also to make the transition to reducing the carbon footprint and, in the future, to carbon neutrality by replacing fossil carbon of liquid hydrocarbon fuels with the carbon produced from biomass.

Suggested Citation

  • Aleksandr Ketov & Natalia Sliusar & Anna Tsybina & Iurii Ketov & Sergei Chudinov & Marina Krasnovskikh & Vladimir Bosnic, 2022. "Plant Biomass Conversion to Vehicle Liquid Fuel as a Path to Sustainability," Resources, MDPI, vol. 11(8), pages 1-11, August.
  • Handle: RePEc:gam:jresou:v:11:y:2022:i:8:p:75-:d:880751
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2079-9276/11/8/75/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2079-9276/11/8/75/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Federica Cucchiella & Idiano D'Adamo & Massimo Gastaldi, 2017. "Biomethane: A Renewable Resource as Vehicle Fuel," Resources, MDPI, vol. 6(4), pages 1-13, October.
    2. Kaur-Mikk Pehme & Kaja Orupõld & Valdo Kuusemets & Ottar Tamm & Yahya Jani & Toomas Tamm & Mait Kriipsalu, 2020. "Field Study on the Efficiency of a Methane Degradation Layer Composed of Fine Fraction Soil from Landfill Mining," Sustainability, MDPI, vol. 12(15), pages 1-16, August.
    3. Gheorghe Stegarescu & Jordi Escuer-Gatius & Kaido Soosaar & Karin Kauer & Tõnu Tõnutare & Alar Astover & Endla Reintam, 2020. "Effect of Crop Residue Decomposition on Soil Aggregate Stability," Agriculture, MDPI, vol. 10(11), pages 1-17, November.
    4. Long, Feng & Liu, Weiguo & Jiang, Xia & Zhai, Qiaolong & Cao, Xincheng & Jiang, Jianchun & Xu, Junming, 2021. "State-of-the-art technologies for biofuel production from triglycerides: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
    5. George Anastopoulos & Ypatia Zannikou & Stamoulis Stournas & Stamatis Kalligeros, 2009. "Transesterification of Vegetable Oils with Ethanol and Characterization of the Key Fuel Properties of Ethyl Esters," Energies, MDPI, vol. 2(2), pages 1-15, June.
    6. Alessio Ilari & Daniele Duca & Kofi Armah Boakye-Yiadom & Thomas Gasperini & Giuseppe Toscano, 2022. "Carbon Footprint and Feedstock Quality of a Real Biomass Power Plant Fed with Forestry and Agricultural Residues," Resources, MDPI, vol. 11(2), pages 1-20, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nahas, Lea & Dahdah, Eliane & Aouad, Samer & El Khoury, Bilal & Gennequin, Cedric & Abi Aad, Edmond & Estephane, Jane, 2023. "Highly efficient scallop seashell-derived catalyst for biodiesel production from sunflower and waste cooking oils: Reaction kinetics and effect of calcination temperature studies," Renewable Energy, Elsevier, vol. 202(C), pages 1086-1095.
    2. Prince Obinna Njoku & Stuart Piketh & Rachel Makungo & Joshua Nosa Edokpayi, 2023. "Monitoring of Subsurface Emissions and the Influence of Meteorological Factors on Landfill Gas Emissions: A Case Study of a South African Landfill," Sustainability, MDPI, vol. 15(7), pages 1-24, March.
    3. Erika Carnevale & Giovanni Molari & Matteo Vittuari, 2017. "Used Cooking Oils in the Biogas Chain: A Technical and Economic Assessment," Energies, MDPI, vol. 10(2), pages 1-13, February.
    4. Federica Cucchiella & Idiano D’Adamo & Massimo Gastaldi, 2018. "Future Trajectories of Renewable Energy Consumption in the European Union," Resources, MDPI, vol. 7(1), pages 1-13, February.
    5. Panchal, Tirth M. & Patel, Ankit & Chauhan, D.D. & Thomas, Merlin & Patel, Jigar V., 2017. "A methodological review on bio-lubricants from vegetable oil based resources," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 65-70.
    6. Raja Chowdhury & Nidia Caetano & Matthew J. Franchetti & Kotnoor Hariprasad, 2023. "Life Cycle Based GHG Emissions from Algae Based Bioenergy with a Special Emphasis on Climate Change Indicators and Their Uses in Dynamic LCA: A Review," Sustainability, MDPI, vol. 15(3), pages 1-19, January.
    7. Aslan, Volkan & Eryilmaz, Tanzer, 2020. "Polynomial regression method for optimization of biodiesel production from black mustard (Brassica nigra L.) seed oil using methanol, ethanol, NaOH, and KOH," Energy, Elsevier, vol. 209(C).
    8. Stefania Lucantonio & Andrea Di Giuliano & Leucio Rossi & Katia Gallucci, 2023. "Green Diesel Production via Deoxygenation Process: A Review," Energies, MDPI, vol. 16(2), pages 1-44, January.
    9. Wancura, João H.C. & Brondani, Michel & dos Santos, Maicon S.N. & Oro, Carolina E.D. & Wancura, Guilherme C. & Tres, Marcus V. & Oliveira, J. Vladimir, 2023. "Demystifying the enzymatic biodiesel: How lipases are contributing to its technological advances," Renewable Energy, Elsevier, vol. 216(C).
    10. Serhii Halko & Oleksandr Vershkov & Jakub Horák & Oleksandr Lezhenkin & Larysa Boltianska & Anatolii Kucher & Olena Suprun & Oleksandr Miroshnyk & Vitalii Nitsenko, 2023. "Efficiency of Combed Straw Harvesting Technology Involving Straw Decomposition in the Soil," Agriculture, MDPI, vol. 13(3), pages 1-15, March.
    11. Ming-Chien Hsiao & Shuhn-Shyurng Hou & Jui-Yang Kuo & Pei-Hsuan Hsieh, 2018. "Optimized Conversion of Waste Cooking Oil to Biodiesel Using Calcium Methoxide as Catalyst under Homogenizer System Conditions," Energies, MDPI, vol. 11(10), pages 1-12, October.
    12. Maciej Górka & Yaroslav Bezyk & Izabela Sówka, 2021. "Assessment of GHG Interactions in the Vicinity of the Municipal Waste Landfill Site—Case Study," Energies, MDPI, vol. 14(24), pages 1-19, December.
    13. Aline Scaramuzza Aquino & Milena Fernandes da Silva & Thiago Silva de Almeida & Filipe Neimaier Bilheri & Attilio Converti & James Correia de Melo, 2022. "Mapping of Alternative Oilseeds from the Brazilian Caatinga and Assessment of Catalytic Pathways toward Biofuels Production," Energies, MDPI, vol. 15(18), pages 1-25, September.
    14. Zane Vincevica-Gaile & Tonis Teppand & Mait Kriipsalu & Maris Krievans & Yahya Jani & Maris Klavins & Roy Hendroko Setyobudi & Inga Grinfelde & Vita Rudovica & Toomas Tamm & Merrit Shanskiy & Egle Saa, 2021. "Towards Sustainable Soil Stabilization in Peatlands: Secondary Raw Materials as an Alternative," Sustainability, MDPI, vol. 13(12), pages 1-24, June.
    15. Xie, Wenlei & Li, Jiangbo, 2023. "Magnetic solid catalysts for sustainable and cleaner biodiesel production: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 171(C).
    16. Fassinou, Wanignon Ferdinand, 2012. "Higher heating value (HHV) of vegetable oils, fats and biodiesels evaluation based on their pure fatty acids' HHV," Energy, Elsevier, vol. 45(1), pages 798-805.
    17. Mohammed Kamil & Khalid Ramadan & Abdul Ghani Olabi & Chaouki Ghenai & Abrar Inayat & Mugdad H. Rajab, 2019. "Desert Palm Date Seeds as a Biodiesel Feedstock: Extraction, Characterization, and Engine Testing," Energies, MDPI, vol. 12(16), pages 1-20, August.
    18. Sophie Fon Sing & Andreas Isdepsky & Michael Borowitzka & Navid Moheimani, 2013. "Production of biofuels from microalgae," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 18(1), pages 47-72, January.
    19. Daniele Duca & Giuseppe Toscano, 2022. "Biomass Energy Resources: Feedstock Quality and Bioenergy Sustainability," Resources, MDPI, vol. 11(6), pages 1-6, June.
    20. S, Prabakaran & T, Mohanraj & A, Arumugam, 2021. "Azolla pinnata methyl ester production and process optimization using a novel heterogeneous catalyst," Renewable Energy, Elsevier, vol. 180(C), pages 353-371.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jresou:v:11:y:2022:i:8:p:75-:d:880751. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.