IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v179y2016icp1062-1068.html
   My bibliography  Save this article

Co-production of clean syngas and ash adsorbent during sewage sludge gasification: Synergistic effect of Fenton peroxidation and CaO conditioning

Author

Listed:
  • Liu, Huan
  • Yi, Linlin
  • Zhang, Qiang
  • Hu, Hongyun
  • Lu, Geng
  • Li, Aijun
  • Yao, Hong

Abstract

In order to achieve the complete utilization of both sludge organic and inorganic components, this study proposed a novel method for synchronous production of clean syngas and ash adsorbent during steam gasification process based on composite conditioning. Sewage sludge was pretreated by Fenton’s reagent (Fe2+/H2O2) and CaO, then gasified in a lab-scale fluidized bed at 873–1273K. The ash adsorption performance was also evaluated in a self-designed reactor. According to the results, both residual iron and calcium salts were able to promote H2-rich fuel gas generation. The effect of iron compounds became more strongly with temperature increased, while the influence of calcium substances tend to be more obviously with temperature decreased. Thus after combined conditioning, very good sludge gasification performance and the highest cold gas efficiency were achieved at a wide temperature range. Moreover, separate gasification of Fenton-oxidized or CaO-treated sludge released H2S emission respectively from sulfonic acid/sulfone/heterocyclic-S and inorganic sulfide in char. However, H2S releasing amount was less than 1.8% of total sulfur with the co-usage of two conditioners due to oxidation and fixation reactions. Meanwhile, although CaCxNy that formed in CaO-added sludge char reacted with steam to produce NH3, the residual iron and calcium compounds could synergistically inhibit the final emissions of NH3 and HCN. In this case, no nitrogenous gas was generated at 1273K. Besides this outstanding role, the remaining conditioners were still able to boost the adsorption performance of sludge gasification ash and significantly prolong its life.

Suggested Citation

  • Liu, Huan & Yi, Linlin & Zhang, Qiang & Hu, Hongyun & Lu, Geng & Li, Aijun & Yao, Hong, 2016. "Co-production of clean syngas and ash adsorbent during sewage sludge gasification: Synergistic effect of Fenton peroxidation and CaO conditioning," Applied Energy, Elsevier, vol. 179(C), pages 1062-1068.
  • Handle: RePEc:eee:appene:v:179:y:2016:i:c:p:1062-1068
    DOI: 10.1016/j.apenergy.2016.07.063
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261916310054
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2016.07.063?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Cano, R. & Pérez-Elvira, S.I. & Fdz-Polanco, F., 2015. "Energy feasibility study of sludge pretreatments: A review," Applied Energy, Elsevier, vol. 149(C), pages 176-185.
    2. Zhao, Peitao & Ge, Shifu & Yoshikawa, Kunio, 2013. "An orthogonal experimental study on solid fuel production from sewage sludge by employing steam explosion," Applied Energy, Elsevier, vol. 112(C), pages 1213-1221.
    3. Fytili, D. & Zabaniotou, A., 2008. "Utilization of sewage sludge in EU application of old and new methods--A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(1), pages 116-140, January.
    4. Tyagi, Vinay Kumar & Lo, Shang-Lien, 2013. "Sludge: A waste or renewable source for energy and resources recovery?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 25(C), pages 708-728.
    5. Cordiner, S. & De Simone, G. & Mulone, V., 2012. "Experimental–numerical design of a biomass bubbling fluidized bed gasifier for paper sludge energy recovery," Applied Energy, Elsevier, vol. 97(C), pages 532-542.
    6. Xu, Z.R. & Zhu, W. & Li, M. & Zhang, H.W. & Gong, M., 2013. "Quantitative analysis of polycyclic aromatic hydrocarbons in solid residues from supercritical water gasification of wet sewage sludge," Applied Energy, Elsevier, vol. 102(C), pages 476-483.
    7. Budych-Gorzna, Magdalena & Smoczynski, Marcin & Oleskowicz-Popiel, Piotr, 2016. "Enhancement of biogas production at the municipal wastewater treatment plant by co-digestion with poultry industry waste," Applied Energy, Elsevier, vol. 161(C), pages 387-394.
    8. Pandey, Prashant & Shinde, Vikas N. & Deopurkar, Rajendra L. & Kale, Sharad P. & Patil, Sunil A. & Pant, Deepak, 2016. "Recent advances in the use of different substrates in microbial fuel cells toward wastewater treatment and simultaneous energy recovery," Applied Energy, Elsevier, vol. 168(C), pages 706-723.
    9. Nipattummakul, Nimit & Ahmed, Islam & Kerdsuwan, Somrat & Gupta, Ashwani K., 2010. "High temperature steam gasification of wastewater sludge," Applied Energy, Elsevier, vol. 87(12), pages 3729-3734, December.
    10. Mäkelä, Mikko & Geladi, Paul & Larsson, Sylvia H. & Finell, Michael, 2014. "Pretreatment of recycled paper sludge with a novel high-velocity pilot cyclone: Effect of process parameters on convective drying efficiency," Applied Energy, Elsevier, vol. 131(C), pages 490-498.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Guo, Shuai & Liu, Tiecheng & Hui, Jicheng & Che, Deyong & Li, Xingcan & Sun, Baizhong & Li, Shaohua, 2019. "Effects of calcium oxide on nitrogen oxide precursor formation during sludge protein pyrolysis," Energy, Elsevier, vol. 189(C).
    2. Zhang, Pengchao & Hu, Hongyun & Tang, Hua & Yang, Yuhan & Liu, Huan & Lu, Qiang & Li, Xian & Worasuwannarak, Nakorn & Yao, Hong, 2019. "In-depth experimental study of pyrolysis characteristics of raw and cooking treated shrimp shell samples," Renewable Energy, Elsevier, vol. 139(C), pages 730-738.
    3. Sun, Yongqi & Chen, Jingjing & Zhang, Zuotai, 2019. "General roles of sludge ash, CaO and Al2O3 on the sludge pyrolysis toward clean utilizations," Applied Energy, Elsevier, vol. 233, pages 412-423.
    4. Carotenuto, Alberto & Di Fraia, Simona & Massarotti, Nicola & Sobek, Szymon & Uddin, M. Rakib & Vanoli, Laura & Werle, Sebastian, 2023. "Predictive modeling for energy recovery from sewage sludge gasification," Energy, Elsevier, vol. 263(PB).
    5. Yang, Xiaoxia & Gu, Shengshen & Kheradmand, Amanj & Kan, Tao & He, Jing & Strezov, Vladimir & Zou, Ruiping & Yu, Aibing & Jiang, Yijiao, 2022. "Tunable syngas production from biomass: Synergistic effect of steam, Ni–CaO catalyst, and biochar," Energy, Elsevier, vol. 254(PB).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Adam Masłoń & Joanna Czarnota & Aleksandra Szaja & Joanna Szulżyk-Cieplak & Grzegorz Łagód, 2020. "The Enhancement of Energy Efficiency in a Wastewater Treatment Plant through Sustainable Biogas Use: Case Study from Poland," Energies, MDPI, vol. 13(22), pages 1-21, November.
    2. Luz, Fábio Codignole & Cordiner, Stefano & Manni, Alessandro & Mulone, Vincenzo & Rocco, Vittorio, 2017. "Anaerobic digestion of coffee grounds soluble fraction at laboratory scale: Evaluation of the biomethane potential," Applied Energy, Elsevier, vol. 207(C), pages 166-175.
    3. Shahbeig, Hossein & Nosrati, Mohsen, 2020. "Pyrolysis of municipal sewage sludge for bioenergy production: Thermo-kinetic studies, evolved gas analysis, and techno-socio-economic assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    4. Syed-Hassan, Syed Shatir A. & Wang, Yi & Hu, Song & Su, Sheng & Xiang, Jun, 2017. "Thermochemical processing of sewage sludge to energy and fuel: Fundamentals, challenges and considerations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 888-913.
    5. Zhao, Peitao & Chen, Hongfang & Ge, Shifu & Yoshikawa, Kunio, 2013. "Effect of the hydrothermal pretreatment for the reduction of NO emission from sewage sludge combustion," Applied Energy, Elsevier, vol. 111(C), pages 199-205.
    6. Inesa Kniuipytė & Marius Praspaliauskas & Jonė Venclovienė & Jūratė Žaltauskaitė, 2023. "Soil Remediation after Sewage Sludge or Sewage Sludge Char Application with Industrial Hemp and Its Potential for Bioenergy Production," Sustainability, MDPI, vol. 15(14), pages 1-17, July.
    7. Zhao, Peitao & Ge, Shifu & Yoshikawa, Kunio, 2013. "An orthogonal experimental study on solid fuel production from sewage sludge by employing steam explosion," Applied Energy, Elsevier, vol. 112(C), pages 1213-1221.
    8. Magdalena Budych-Gorzna & Beata Szatkowska & Lukasz Jaroszynski & Bjarne Paulsrud & Ewelina Jankowska & Tymoteusz Jaroszynski & Piotr Oleskowicz-Popiel, 2021. "Towards an Energy Self-Sufficient Resource Recovery Facility by Improving Energy and Economic Balance of a Municipal WWTP with Chemically Enhanced Primary Treatment," Energies, MDPI, vol. 14(5), pages 1-17, March.
    9. Shao, Ling & Chen, G.Q., 2016. "Renewability assessment of a production system: Based on embodied energy as emergy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 380-392.
    10. Elena Goldan & Valentin Nedeff & Narcis Barsan & Mihaela Culea & Claudia Tomozei & Mirela Panainte-Lehadus & Emilian Mosnegutu, 2022. "Evaluation of the Use of Sewage Sludge Biochar as a Soil Amendment—A Review," Sustainability, MDPI, vol. 14(9), pages 1-22, April.
    11. Wu, Xiaoyan & Tian, Yu & Zhou, Xiaoliang & Kong, Xiaowei & Zhang, Jun & Zuo, Wei & Wang, Dezhen & Ye, Xuesong, 2016. "Performance and long-term stability of nickel/yttria-stabilized zirconia anode-supported solid oxide fuel cell in simulated biosyngas," Energy, Elsevier, vol. 114(C), pages 1-9.
    12. Ren, Jingzheng & Liang, Hanwei & Dong, Liang & Gao, Zhiqiu & He, Chang & Pan, Ming & Sun, Lu, 2017. "Sustainable development of sewage sludge-to-energy in China: Barriers identification and technologies prioritization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 384-396.
    13. Elalami, D. & Carrere, H. & Monlau, F. & Abdelouahdi, K. & Oukarroum, A. & Barakat, A., 2019. "Pretreatment and co-digestion of wastewater sludge for biogas production: Recent research advances and trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
    14. Gil-Lalaguna, N. & Sánchez, J.L. & Murillo, M.B. & Atienza-Martínez, M. & Gea, G., 2014. "Energetic assessment of air-steam gasification of sewage sludge and of the integration of sewage sludge pyrolysis and air-steam gasification of char," Energy, Elsevier, vol. 76(C), pages 652-662.
    15. Manwatkar, Prashik & Dhote, Lekha & Pandey, Ram Avtar & Middey, Anirban & Kumar, Sunil, 2021. "Combustion of distillery sludge mixed with coal in a drop tube furnace and emission characteristics," Energy, Elsevier, vol. 221(C).
    16. Kor-Bicakci, Gokce & Eskicioglu, Cigdem, 2019. "Recent developments on thermal municipal sludge pretreatment technologies for enhanced anaerobic digestion," Renewable and Sustainable Energy Reviews, Elsevier, vol. 110(C), pages 423-443.
    17. Zhao, Peitao & Shen, Yafei & Ge, Shifu & Chen, Zhenqian & Yoshikawa, Kunio, 2014. "Clean solid biofuel production from high moisture content waste biomass employing hydrothermal treatment," Applied Energy, Elsevier, vol. 131(C), pages 345-367.
    18. Kim, Young Doo & Yang, Chang Won & Kim, Beom Jong & Kim, Kwang Su & Lee, Jeung Woo & Moon, Ji Hong & Yang, Won & Yu, Tae U & Lee, Uen Do, 2013. "Air-blown gasification of woody biomass in a bubbling fluidized bed gasifier," Applied Energy, Elsevier, vol. 112(C), pages 414-420.
    19. Abdel Wahaab, Rifaat & Mahmoud, Mohamed & van Lier, Jules B., 2020. "Toward achieving sustainable management of municipal wastewater sludge in Egypt: The current status and future prospective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 127(C).
    20. Hong, Sungpyo & Ryu, Changkook & Ko, Han Seo & Ohm, Tae-In & Chae, Jong-Seong, 2013. "Process consideration of fry-drying combined with steam compression for efficient fuel production from sewage sludge," Applied Energy, Elsevier, vol. 103(C), pages 468-476.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:179:y:2016:i:c:p:1062-1068. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.