IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v184y2022icp498-509.html
   My bibliography  Save this article

Thermogravimetric kinetics and pyrolytic tri-state products analysis towards insights into understanding the pyrolysis mechanism of Spirulina platensis with calcium oxide

Author

Listed:
  • Hu, Mian
  • Zhang, Haiyang
  • Ye, Zhiheng
  • Ma, Jiajia
  • Chen, Zhihua
  • Wang, Junliang
  • Wang, Cheng
  • Pan, Zhiyan

Abstract

Thermogravimetric kinetics and pyrolytic tri-state products analyses towards insights into understanding the pyrolysis mechanism of Spirulina platensis with calcium oxide were investigated using a thermogravimetric analyzer and a fixed bed reactor, respectively. The pyrolysis kinetics were studied by Friedman method and results indicated that the f(α)=(1-α)4 with A0 = 1.99E+10s−1 and f(α)=−1/ln(1−α) with A0 = 8.33E+11s−1 were suitable for Spirulina platensis and Spirulina platensis + CaO (stage II) pyrolysis, respectively. According to pyrolysis behaviors and kinetics analyzed, the potential reaction behaviors of CaO during the pyrolysis of Spirulina platensis were explored. Spirulina platensis pyrolytic tri-state products analyzed indicated that, when CaO as additive, the gas yield markedly increased with more H2, CO content and less CO2 content and the bio-oil yield significantly decreased. Moreover, the contents of aromatic compounds, aliphatic compounds, phenols and ketons obviously increased in bio-oil with the appreciably decreased in the contents of esters, N-containing compounds, O-containing compounds and acids. Based on the evolutionary mechanism of CaO and pyrolytic tri-state products, the pyrolysis mechanism of Spirulina platensis with calcium oxide was proposed.

Suggested Citation

  • Hu, Mian & Zhang, Haiyang & Ye, Zhiheng & Ma, Jiajia & Chen, Zhihua & Wang, Junliang & Wang, Cheng & Pan, Zhiyan, 2022. "Thermogravimetric kinetics and pyrolytic tri-state products analysis towards insights into understanding the pyrolysis mechanism of Spirulina platensis with calcium oxide," Renewable Energy, Elsevier, vol. 184(C), pages 498-509.
  • Handle: RePEc:eee:renene:v:184:y:2022:i:c:p:498-509
    DOI: 10.1016/j.renene.2021.11.085
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148121016700
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2021.11.085?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Li, Shuangxi & Hu, Tianyi & Xu, Yanzhe & Wang, Jingyi & Chu, Ruoyu & Yin, Zhihong & Mo, Fan & Zhu, Liandong, 2020. "A review on flocculation as an efficient method to harvest energy microalgae: Mechanisms, performances, influencing factors and perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    2. Hu, Mian & Laghari, Mahmood & Cui, Baihui & Xiao, Bo & Zhang, Beiping & Guo, Dabin, 2018. "Catalytic cracking of biomass tar over char supported nickel catalyst," Energy, Elsevier, vol. 145(C), pages 228-237.
    3. Ko, Ja Kyong & Lee, Jae Hoon & Jung, Je Hyeong & Lee, Sun-Mi, 2020. "Recent advances and future directions in plant and yeast engineering to improve lignocellulosic biofuel production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    4. Ren, Qiangqiang & Zhao, Changsui, 2013. "NOx and N2O precursors (NH3 and HCN) from biomass pyrolysis: interaction between amino acid and mineral matter," Applied Energy, Elsevier, vol. 112(C), pages 170-174.
    5. Oliveira, João Leonardo F. & Batista, Luana M.B. & Alburquerque dos Santos, Nataly & Araújo, Aruzza M.M. & Fernandes, Valter J. & Araujo, Antonio S. & Alves, Ana P.M. & Gondim, Amanda D., 2021. "Clay-supported zinc oxide as catalyst in pyrolysis and deoxygenation of licuri (Syagrus coronata) oil," Renewable Energy, Elsevier, vol. 168(C), pages 1377-1387.
    6. Zhu, Liandong & Nugroho, Y.K. & Shakeel, S.R. & Li, Zhaohua & Martinkauppi, B. & Hiltunen, E., 2017. "Using microalgae to produce liquid transportation biodiesel: What is next?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 391-400.
    7. Zhang, Xin & Deng, Honghu & Hou, Xueyi & Qiu, Rongliang & Chen, Zhihua, 2019. "Pyrolytic behavior and kinetic of wood sawdust at isothermal and non-isothermal conditions," Renewable Energy, Elsevier, vol. 142(C), pages 284-294.
    8. Das, Bikashbindu & Mohanty, Kaustubha, 2019. "A review on advances in sustainable energy production through various catalytic processes by using catalysts derived from waste red mud," Renewable Energy, Elsevier, vol. 143(C), pages 1791-1811.
    9. Hu, Mian & Guo, Dabin & Ma, Caifeng & Hu, Zhiquan & Zhang, Beiping & Xiao, Bo & Luo, Siyi & Wang, Jingbo, 2015. "Hydrogen-rich gas production by the gasification of wet MSW (municipal solid waste) coupled with carbon dioxide capture," Energy, Elsevier, vol. 90(P1), pages 857-863.
    10. Na, Jeong-Geol & Park, Young-Kwon & Kim, Doo Il & Oh, You-Kwan & Jeon, Sang Goo & Kook, Jin Woo & Shin, Ji Hoon & Lee, See Hoon, 2015. "Rapid pyrolysis behavior of oleaginous microalga, Chlorella sp. KR-1 with different triglyceride contents," Renewable Energy, Elsevier, vol. 81(C), pages 779-784.
    11. Zhu, L.-D. & Hiltunen, E., 2016. "Application of livestock waste compost to cultivate microalgae for bioproducts production: A feasible framework," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 1285-1290.
    12. Fonseca, Frederico G. & Soares Dias, Ana P., 2021. "Almond shells: Catalytic fixed-bed pyrolysis and volatilization kinetics," Renewable Energy, Elsevier, vol. 180(C), pages 1380-1390.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hu, Mian & Ye, Zhiheng & Zhang, Qi & Xue, Qiping & Li, Zhibin & Wang, Junliang & Pan, Zhiyan, 2022. "Towards understanding the chemical reactions between KOH and oxygen-containing groups during KOH-catalyzed pyrolysis of biomass," Energy, Elsevier, vol. 245(C).
    2. Gözke, Gözde, 2022. "Kinetic and thermodynamic analyses based on thermogravimetric pyrolysis of watermelon seed by isoconversional and master plots methods," Renewable Energy, Elsevier, vol. 201(P1), pages 916-927.
    3. Chen, Chunxiang & Wei, Yixue & Wei, Guangsheng & Qiu, Song & Yang, Gaixiu & Bi, Yingxin, 2023. "Microwave Co-pyrolysis of mulberry branches and Chlorella vulgaris under carbon material additives," Energy, Elsevier, vol. 284(C).
    4. Fan, Mengjiao & Gao, Xueming & Shao, Yuewen & Sun, Kai & Jiang, Yuchen & Zhang, Shu & Wang, Yi & Hu, Song & Xiang, Jun & Hu, Xun, 2024. "Nitrogen species from Spirulina platensis derived bio-oil enhance catalytic activity of cobalt catalysts for hydrogenation," Energy, Elsevier, vol. 298(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yin, Zhihong & Chu, Ruoyu & Zhu, Liandong & Li, Shuangxi & Mo, Fan & Hu, Dan & Liu, Chenchen, 2021. "Application of chitosan-based flocculants to harvest microalgal biomass for biofuel production: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    2. Hu, Mian & Ye, Zhiheng & Zhang, Qi & Xue, Qiping & Li, Zhibin & Wang, Junliang & Pan, Zhiyan, 2022. "Towards understanding the chemical reactions between KOH and oxygen-containing groups during KOH-catalyzed pyrolysis of biomass," Energy, Elsevier, vol. 245(C).
    3. Chu, Ruoyu & Li, Shuangxi & Zhu, Liandong & Yin, Zhihong & Hu, Dan & Liu, Chenchen & Mo, Fan, 2021. "A review on co-cultivation of microalgae with filamentous fungi: Efficient harvesting, wastewater treatment and biofuel production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 139(C).
    4. Sergio Cappucci & Serena Nappi & Andrea Cappelli, 2022. "Green Public Areas and Urban Open Spaces Management: New GreenCAL Tool Algorithms and Circular Economy Implications," Land, MDPI, vol. 11(6), pages 1-25, June.
    5. Zhang, Zhikun & Zhu, Zongyuan & Shen, Boxiong & Liu, Lina, 2019. "Insights into biochar and hydrochar production and applications: A review," Energy, Elsevier, vol. 171(C), pages 581-598.
    6. Goh, Brandon Han Hoe & Ong, Hwai Chyuan & Cheah, Mei Yee & Chen, Wei-Hsin & Yu, Kai Ling & Mahlia, Teuku Meurah Indra, 2019. "Sustainability of direct biodiesel synthesis from microalgae biomass: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 107(C), pages 59-74.
    7. Lim, Juin Yau & Teng, Sin Yong & How, Bing Shen & Nam, KiJeon & Heo, SungKu & Máša, Vítězslav & Stehlík, Petr & Yoo, Chang Kyoo, 2022. "From microalgae to bioenergy: Identifying optimally integrated biorefinery pathways and harvest scheduling under uncertainties in predicted climate," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    8. Vladimir Heredia & Olivier Gonçalves & Luc Marchal & Jeremy Pruvost, 2021. "Producing Energy-Rich Microalgae Biomass for Liquid Biofuels: Influence of Strain Selection and Culture Conditions," Energies, MDPI, vol. 14(5), pages 1-15, February.
    9. Hu, Mian & Laghari, Mahmood & Cui, Baihui & Xiao, Bo & Zhang, Beiping & Guo, Dabin, 2018. "Catalytic cracking of biomass tar over char supported nickel catalyst," Energy, Elsevier, vol. 145(C), pages 228-237.
    10. Yan, Xianyao & Li, Yingjie & Sun, Chaoying & Zhang, Chunxiao & Yang, Liguo & Fan, Xiaoxu & Chu, Leizhe, 2022. "Enhanced H2 production from steam gasification of biomass by red mud-doped Ca-Al-Ce bi-functional material," Applied Energy, Elsevier, vol. 312(C).
    11. Yu, Dayu & Hu, Shuang & Liu, Weishan & Wang, Xiaoning & Jiang, Haifeng & Dong, Nanhang, 2020. "Pyrolysis of oleaginous yeast biomass from wastewater treatment: Kinetics analysis and biocrude characterization," Renewable Energy, Elsevier, vol. 150(C), pages 831-839.
    12. Rochelle, David & Najafi, Hamidreza, 2019. "A review of the effect of biodiesel on gas turbine emissions and performance," Renewable and Sustainable Energy Reviews, Elsevier, vol. 105(C), pages 129-137.
    13. Zhang, Huining & Dong, Jianping & Wei, Chao & Cao, Caifang & Zhang, Zuotai, 2022. "Future trend of terminal energy conservation in steelmaking plant: Integration of molten slag heat recovery-combustible gas preparation from waste plastics and CO2 emission reduction," Energy, Elsevier, vol. 239(PE).
    14. Huan Li & Huawei Mou & Nan Zhao & Yaohong Yu & Quan Hong & Mperejekumana Philbert & Yuguang Zhou & Hossein Beidaghy Dizaji & Renjie Dong, 2021. "Nitrogen Migration during Pyrolysis of Raw and Acid Leached Maize Straw," Sustainability, MDPI, vol. 13(7), pages 1-15, March.
    15. Pang, Yunji & Wu, Yuting & Chen, Yisheng & Luo, Fuliang & Chen, Junjun, 2020. "Degradation effect of Ce/Al2O3 catalyst on pyrolysis volatility of pine," Renewable Energy, Elsevier, vol. 162(C), pages 134-143.
    16. Yang, Xiaoxia & Gu, Shengshen & Kheradmand, Amanj & Kan, Tao & He, Jing & Strezov, Vladimir & Zou, Ruiping & Yu, Aibing & Jiang, Yijiao, 2022. "Tunable syngas production from biomass: Synergistic effect of steam, Ni–CaO catalyst, and biochar," Energy, Elsevier, vol. 254(PB).
    17. Hervy, Maxime & Weiss-Hortala, Elsa & Pham Minh, Doan & Dib, Hadi & Villot, Audrey & Gérente, Claire & Berhanu, Sarah & Chesnaud, Anthony & Thorel, Alain & Le Coq, Laurence & Nzihou, Ange, 2019. "Reactivity and deactivation mechanisms of pyrolysis chars from bio-waste during catalytic cracking of tar," Applied Energy, Elsevier, vol. 237(C), pages 487-499.
    18. Aline Scaramuzza Aquino & Milena Fernandes da Silva & Thiago Silva de Almeida & Filipe Neimaier Bilheri & Attilio Converti & James Correia de Melo, 2022. "Mapping of Alternative Oilseeds from the Brazilian Caatinga and Assessment of Catalytic Pathways toward Biofuels Production," Energies, MDPI, vol. 15(18), pages 1-25, September.
    19. Fazril Ideris & Mohd Faiz Muaz Ahmad Zamri & Abd Halim Shamsuddin & Saifuddin Nomanbhay & Fitranto Kusumo & Islam Md Rizwanul Fattah & Teuku Meurah Indra Mahlia, 2022. "Progress on Conventional and Advanced Techniques of In Situ Transesterification of Microalgae Lipids for Biodiesel Production," Energies, MDPI, vol. 15(19), pages 1-32, September.
    20. Cui, Xiaohui & Guo, Liyue & Li, Caihong & Liu, Meizhen & Wu, Guanglei & Jiang, Gaoming, 2021. "The total biomass nitrogen reservoir and its potential of replacing chemical fertilizers in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:184:y:2022:i:c:p:498-509. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.