IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v367y2024ics0306261924007372.html
   My bibliography  Save this article

Highly efficiency H2 production for real coal tar steam reforming over Ni-ca/H-Al catalyst: Effects of oxygen vacancy, CaO doping and synthesis methods

Author

Listed:
  • Deng, Jin
  • Feng, Youneng
  • Li, Chun
  • Yuan, Zhaoran
  • Shang, Ruihang
  • Yuan, Shenfu

Abstract

Steam reforming of medium-low temperature coal tar (SRT) to produce H2 is important for addressing the energy crisis and challenges of global climate change. However, current catalysts still suffer from low H2 selectivity, low tar conversion and poor long-term stability due to the complex composition of real coal tar. Herein, a series of Ni-Ca/H-Al catalysts were prepared by different methods. The results showed that the acid pretreatment effectively removed the hydroxyl groups on the surface of γ-Al2O3 to form oxygen vacancies (Ov), and the NiO was mainly anchored in the Ov. The cit-Ni-2Ca/H-Al catalyst prepared by citric acid-assisted impregnation exhibited the highest H2 yield (152.74 mmol/g-tar), while CO2 was only 22.11 mmol/g-tar. Characterization showed that the addition of CaO improved the dispersion of NiO and increased the Ov concentration. The increase in Ov weakened the NiO bonds in NiO and facilitated the low-temperature reduction of NiO. The cit-Ni-2Ca/H-Al catalysts prepared by the citric acid-assisted impregnation method had better dispersion and strong basic sites compared with the impregnation and precipitation methods, leading to more active sites for CO2 and H2O adsorption, and improving the carbon build-up resistance and reusability of the catalysts. Py-GC/MS results showed the cit-Ni-2Ca/H-Al had excellent tar deoxidation ability and effectively promoted the breakage of CC bonds in furans, benzene ring branches, and CO bonds in aliphatic hydrocarbons. The cit-Ni-2Ca/H-Al catalyst exhibited high tar conversion (90.96%) and H2 yield (146.27 mmol/g-tar) without any treatment for at least 8 cycles. Interestingly, the H2 yield reached 151.58 mmol/g-tar by the simple regeneration of cit-Ni-2Ca/H-Al. This study provides a theoretical basis for efficient steam reforming of real coal tar for H2 production and catalyst preparation.

Suggested Citation

  • Deng, Jin & Feng, Youneng & Li, Chun & Yuan, Zhaoran & Shang, Ruihang & Yuan, Shenfu, 2024. "Highly efficiency H2 production for real coal tar steam reforming over Ni-ca/H-Al catalyst: Effects of oxygen vacancy, CaO doping and synthesis methods," Applied Energy, Elsevier, vol. 367(C).
  • Handle: RePEc:eee:appene:v:367:y:2024:i:c:s0306261924007372
    DOI: 10.1016/j.apenergy.2024.123354
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261924007372
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2024.123354?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    More about this item

    Keywords

    Steam reforming; Coal tar; Oxygen vacancy; Ni-Ca/H-Al catalyst; H2 production;
    All these keywords.

    JEL classification:

    • H2 - Public Economics - - Taxation, Subsidies, and Revenue

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:367:y:2024:i:c:s0306261924007372. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.