IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v188y2019ics0360544219314410.html
   My bibliography  Save this article

Parameter identification of solid oxide fuel cell by Chaotic Binary Shark Smell Optimization method

Author

Listed:
  • Wei, Ya
  • Stanford, Russell J.

Abstract

In this work, a novel optimization method named Chaotic Binary Shark Smell Optimizer is applied to obtain the optimum parameters of the solid oxide fuel cell. In the presented literature, critical metrics of solid oxide fuel cell performance criteria are discussed in a steady-state and dynamic manners. Mean squared deviation within experimental data and modeling data of the net output voltage of the fuel cell stack is considered as the objective function. SIMULINK toolbox in the MATLAB software is used for dynamic modeling of the stack. In this study, the Chaotic Binary Shark Smell Optimizing method is illustrated on some experimental data of commercial stacks. Moreover, a comparison between the proposed optimization method results and some other well-known optimization methods results has been made to show the validation of Chaotic Binary Shark Smell Optimizer. Results of the suggested method for commercial stacks demonstrates the highly efficient performance of this scheme. Furthermore, findings of the numerical simulation in company with mandatory performance measures imply that the capability of the Chaotic Binary Shark Smell Optimizer to produce competing parameters for steady-state and dynamic models of solid oxide fuel cell that indicates the effectuality of the Chaotic Binary Shark Smell Optimizer. Keywords: Solid oxide fuel cell (SOFC), Mathematical modeling, Optimization, Chaotic Binary Shark Smell Optimizer, Parametric investigation.

Suggested Citation

  • Wei, Ya & Stanford, Russell J., 2019. "Parameter identification of solid oxide fuel cell by Chaotic Binary Shark Smell Optimization method," Energy, Elsevier, vol. 188(C).
  • Handle: RePEc:eee:energy:v:188:y:2019:i:c:s0360544219314410
    DOI: 10.1016/j.energy.2019.07.100
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544219314410
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2019.07.100?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Facci, Andrea L. & Cigolotti, Viviana & Jannelli, Elio & Ubertini, Stefano, 2017. "Technical and economic assessment of a SOFC-based energy system for combined cooling, heating and power," Applied Energy, Elsevier, vol. 192(C), pages 563-574.
    2. Giarola, Sara & Forte, Ornella & Lanzini, Andrea & Gandiglio, Marta & Santarelli, Massimo & Hawkes, Adam, 2018. "Techno-economic assessment of biogas-fed solid oxide fuel cell combined heat and power system at industrial scale," Applied Energy, Elsevier, vol. 211(C), pages 689-704.
    3. Chakraborty, Uday Kumar, 2009. "Static and dynamic modeling of solid oxide fuel cell using genetic programming," Energy, Elsevier, vol. 34(6), pages 740-751.
    4. Kang, Sanggyu & Ahn, Kook-Young, 2017. "Dynamic modeling of solid oxide fuel cell and engine hybrid system for distributed power generation," Applied Energy, Elsevier, vol. 195(C), pages 1086-1099.
    5. Hajimolana, S. Ahmad & Hussain, M. Azlan & Daud, W.M. Ashri Wan & Soroush, M. & Shamiri, A., 2011. "Mathematical modeling of solid oxide fuel cells: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(4), pages 1893-1917, May.
    6. Petrescu, Stoian & Petre, Camelia & Costea, Monica & Malancioiu, Octavian & Boriaru, Nicolae & Dobrovicescu, Alexandru & Feidt, Michel & Harman, Charles, 2010. "A methodology of computation, design and optimization of solar Stirling power plant using hydrogen/oxygen fuel cells," Energy, Elsevier, vol. 35(2), pages 729-739.
    7. Sharifzadeh, Mahdi & Meghdari, Mojtaba & Rashtchian, Davood, 2017. "Multi-objective design and operation of Solid Oxide Fuel Cell (SOFC) Triple Combined-cycle Power Generation systems: Integrating energy efficiency and operational safety," Applied Energy, Elsevier, vol. 185(P1), pages 345-361.
    8. Nerat, Marko, 2017. "Modeling and analysis of short-period transient response of a single, planar, anode supported, solid oxide fuel cell during load variations," Energy, Elsevier, vol. 138(C), pages 728-738.
    9. Bressel, Mathieu & Hilairet, Mickael & Hissel, Daniel & Ould Bouamama, Belkacem, 2016. "Extended Kalman Filter for prognostic of Proton Exchange Membrane Fuel Cell," Applied Energy, Elsevier, vol. 164(C), pages 220-227.
    10. Zhang, Hongtao & Li, Xianguo & Liu, Xinzhi & Yan, Jinyue, 2019. "Enhancing fuel cell durability for fuel cell plug-in hybrid electric vehicles through strategic power management," Applied Energy, Elsevier, vol. 241(C), pages 483-490.
    11. Rokni, M., 2017. "Addressing fuel recycling in solid oxide fuel cell systems fed by alternative fuels," Energy, Elsevier, vol. 137(C), pages 1013-1025.
    12. Mushtaq, Usman & Mehran, Muhammad Taqi & Kim, Sun-Kyoung & Lim, Tak-Hyoung & Naqvi, Syed Asad Ali & Lee, Jong-Won & Lee, Seung-Bok & Park, Seok-Joo & Song, Rak-Hyun, 2017. "Evaluation of steady-state characteristics for solid oxide carbon fuel cell short-stacks," Applied Energy, Elsevier, vol. 187(C), pages 886-898.
    13. Jurado, F. & Valverde, M., 2005. "Enhancing the electrical performance of a solid oxide fuel cell using multiobjective genetic algorithms," Renewable Energy, Elsevier, vol. 30(6), pages 881-902.
    14. Yahya, Abir & Ferrero, Domenico & Dhahri, Hacen & Leone, Pierluigi & Slimi, Khalifa & Santarelli, Massimo, 2018. "Electrochemical performance of solid oxide fuel cell: Experimental study and calibrated model," Energy, Elsevier, vol. 142(C), pages 932-943.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gouda, Eid A. & Kotb, Mohamed F. & El-Fergany, Attia A., 2021. "Jellyfish search algorithm for extracting unknown parameters of PEM fuel cell models: Steady-state performance and analysis," Energy, Elsevier, vol. 221(C).
    2. Fathy, Ahmed & Babu, Thanikanti Sudhakar & Abdelkareem, Mohammad Ali & Rezk, Hegazy & Yousri, Dalia, 2022. "Recent approach based heterogeneous comprehensive learning Archimedes optimization algorithm for identifying the optimal parameters of different fuel cells," Energy, Elsevier, vol. 248(C).
    3. Banaja Mohanty & Rajvikram Madurai Elavarasan & Hany M. Hasanien & Elangovan Devaraj & Rania A. Turky & Rishi Pugazhendhi, 2022. "Parameters Identification of Proton Exchange Membrane Fuel Cell Model Based on the Lightning Search Algorithm," Energies, MDPI, vol. 15(21), pages 1-19, October.
    4. Zhimin Guo & Zhiyuan Ye & Pengcheng Ni & Can Cao & Xiaozhao Wei & Jian Zhao & Xing He, 2023. "Intelligent Digital Twin Modelling for Hybrid PV-SOFC Power Generation System," Energies, MDPI, vol. 16(6), pages 1-21, March.
    5. Fu, Quanrong & Tian, Chunyu & Hun, Lianming & Wang, Xin & Li, Zhiyi & Liu, Zhijun & Wei, Wei, 2024. "Ni agglomeration and performance degradation of solid oxide fuel cell: A model-based quantitative study and microstructure optimization," Energy, Elsevier, vol. 289(C).
    6. Wang, Jian & Xu, Yi-Peng & She, Chen & Xu, Ping & Bagal, Hamid Asadi, 2022. "Optimal parameter identification of SOFC model using modified gray wolf optimization algorithm," Energy, Elsevier, vol. 240(C).
    7. Baccioli, Andrea & Liponi, Angelica & Milewski, Jarosław & Szczęśniak, Arkadiusz & Desideri, Umberto, 2021. "Hybridization of an internal combustion engine with a molten carbonate fuel cell for marine applications," Applied Energy, Elsevier, vol. 298(C).
    8. Ong, Samuel & Al-Othman, Amani & Tawalbeh, Muhammad, 2023. "Emerging technologies in prognostics for fuel cells including direct hydrocarbon fuel cells," Energy, Elsevier, vol. 277(C).
    9. Yang, Bo & Guo, Zhengxun & Yang, Yi & Chen, Yijun & Zhang, Rui & Su, Keyi & Shu, Hongchun & Yu, Tao & Zhang, Xiaoshun, 2021. "Extreme learning machine based meta-heuristic algorithms for parameter extraction of solid oxide fuel cells," Applied Energy, Elsevier, vol. 303(C).
    10. Tanveer, Waqas Hassan & Rezk, Hegazy & Nassef, Ahmed & Abdelkareem, Mohammad Ali & Kolosz, Ben & Karuppasamy, K. & Aslam, Jawad & Gilani, Syed Omer, 2020. "Improving fuel cell performance via optimal parameters identification through fuzzy logic based-modeling and optimization," Energy, Elsevier, vol. 204(C).
    11. Fathy, Ahmed & Rezk, Hegazy, 2022. "Political optimizer based approach for estimating SOFC optimal parameters for static and dynamic models," Energy, Elsevier, vol. 238(PC).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zeng, Hongyu & Wang, Yuqing & Shi, Yixiang & Cai, Ningsheng & Yuan, Dazhong, 2018. "Highly thermal integrated heat pipe-solid oxide fuel cell," Applied Energy, Elsevier, vol. 216(C), pages 613-619.
    2. El-Hay, E.A. & El-Hameed, M.A. & El-Fergany, A.A., 2019. "Optimized Parameters of SOFC for steady state and transient simulations using interior search algorithm," Energy, Elsevier, vol. 166(C), pages 451-461.
    3. Polverino, Pierpaolo & Sorrentino, Marco & Pianese, Cesare, 2017. "A model-based diagnostic technique to enhance faults isolability in Solid Oxide Fuel Cell systems," Applied Energy, Elsevier, vol. 204(C), pages 1198-1214.
    4. Ding, Xiaoyi & Lv, Xiaojing & Weng, Yiwu, 2019. "Coupling effect of operating parameters on performance of a biogas-fueled solid oxide fuel cell/gas turbine hybrid system," Applied Energy, Elsevier, vol. 254(C).
    5. Rashid, Kashif & Dong, Sang Keun & Mehran, Muhammad Taqi & Lee, Dong Won, 2017. "Design and analysis of compact hotbox for solid oxide fuel cell based 1kW-class power generation system," Applied Energy, Elsevier, vol. 208(C), pages 620-636.
    6. Habibollahzade, Ali & Gholamian, Ehsan & Behzadi, Amirmohammad, 2019. "Multi-objective optimization and comparative performance analysis of hybrid biomass-based solid oxide fuel cell/solid oxide electrolyzer cell/gas turbine using different gasification agents," Applied Energy, Elsevier, vol. 233, pages 985-1002.
    7. Koo, Taehyung & Kim, Young Sang & Lee, Young Duk & Yu, Sangseok & Lee, Dong Keun & Ahn, Kook Young, 2021. "Exergetic evaluation of operation results of 5-kW-class SOFC-HCCI engine hybrid power generation system," Applied Energy, Elsevier, vol. 295(C).
    8. Fathy, Ahmed & Rezk, Hegazy, 2022. "Political optimizer based approach for estimating SOFC optimal parameters for static and dynamic models," Energy, Elsevier, vol. 238(PC).
    9. Wang, Nan & Wang, Dongxuan & Xing, Yazhou & Shao, Limin & Afzal, Sadegh, 2020. "Application of co-evolution RNA genetic algorithm for obtaining optimal parameters of SOFC model," Renewable Energy, Elsevier, vol. 150(C), pages 221-233.
    10. Shan-Jen Cheng & Wen-Ken Li & Te-Jen Chang & Chang-Hung Hsu, 2021. "Data-Driven Prognostics of the SOFC System Based on Dynamic Neural Network Models," Energies, MDPI, vol. 14(18), pages 1-17, September.
    11. Amedi, Hamid Reza & Bazooyar, Bahamin & Pishvaie, Mahmoud Reza, 2015. "Control of anode supported SOFCs (solid oxide fuel cells): Part I. mathematical modeling and state estimation within one cell," Energy, Elsevier, vol. 90(P1), pages 605-621.
    12. Chen, Kui & Laghrouche, Salah & Djerdir, Abdesslem, 2019. "Degradation model of proton exchange membrane fuel cell based on a novel hybrid method," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
    13. Mohammad shafie, Mohammad & Ali rajabipour, & Mehrpooya, Mehdi, 2022. "Investigation of an electrochemical conversion of carbon dioxide to ethanol and solid oxide fuel cell, gas turbine hybrid process," Renewable Energy, Elsevier, vol. 184(C), pages 1112-1129.
    14. Kim, Young Sang & Lee, Young Duk & Ahn, Kook Young, 2020. "System integration and proof-of-concept test results of SOFC–engine hybrid power generation system," Applied Energy, Elsevier, vol. 277(C).
    15. Hesham Alhumade & Ahmed Fathy & Abdulrahim Al-Zahrani & Muhyaddin Jamal Rawa & Hegazy Rezk, 2021. "Optimal Parameter Estimation Methodology of Solid Oxide Fuel Cell Using Modern Optimization," Mathematics, MDPI, vol. 9(9), pages 1-19, May.
    16. Giarola, Sara & Forte, Ornella & Lanzini, Andrea & Gandiglio, Marta & Santarelli, Massimo & Hawkes, Adam, 2018. "Techno-economic assessment of biogas-fed solid oxide fuel cell combined heat and power system at industrial scale," Applied Energy, Elsevier, vol. 211(C), pages 689-704.
    17. E. Skordilis & R. Moghaddass, 2017. "A condition monitoring approach for real-time monitoring of degrading systems using Kalman filter and logistic regression," International Journal of Production Research, Taylor & Francis Journals, vol. 55(19), pages 5579-5596, October.
    18. Sorce, A. & Greco, A. & Magistri, L. & Costamagna, P., 2014. "FDI oriented modeling of an experimental SOFC system, model validation and simulation of faulty states," Applied Energy, Elsevier, vol. 136(C), pages 894-908.
    19. Barzegari, Mohammad M. & Dardel, Morteza & Alizadeh, Ebrahim & Ramiar, Abas, 2016. "Dynamic modeling and validation studies of dead-end cascade H2/O2 PEM fuel cell stack with integrated humidifier and separator," Applied Energy, Elsevier, vol. 177(C), pages 298-308.
    20. Tera, Ibrahim & Zhang, Shengan & Liu, Guilian, 2024. "A conceptual hydrogen, heat and power polygeneration system based on biomass gasification, SOFC and waste heat recovery units: Energy, exergy, economic and emergy (4E) assessment," Energy, Elsevier, vol. 295(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:188:y:2019:i:c:s0360544219314410. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.