IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i6p2806-d1100417.html
   My bibliography  Save this article

Intelligent Digital Twin Modelling for Hybrid PV-SOFC Power Generation System

Author

Listed:
  • Zhimin Guo

    (State Grid Henan Electric Power Research Institute, Zhengzhou 450000, China)

  • Zhiyuan Ye

    (Anhui Jiyuan Software Co., Ltd., Hefei 230000, China)

  • Pengcheng Ni

    (Anhui Jiyuan Software Co., Ltd., Hefei 230000, China)

  • Can Cao

    (Anhui Jiyuan Software Co., Ltd., Hefei 230000, China)

  • Xiaozhao Wei

    (State Grid Henan Electric Power Research Institute, Zhengzhou 450000, China)

  • Jian Zhao

    (State Grid Henan Electric Power Research Institute, Zhengzhou 450000, China)

  • Xing He

    (Faculty of Electric Power Engineering, Shanghai Jiao Tong University, Shanghai 200240, China)

Abstract

Hydrogen (H 2 ) energy is an ideal non-polluting renewable energy and can achieve long-term energy storage, which can effectively regulate the intermittence and seasonal fluctuation of solar energy. Solid oxide fuel cells (SOFC) can generate electricity from H 2 with only outputs of water, waste heat, and almost no pollution. To solve the power generation instability and discontinuity of solar photovoltaic (PV) systems, a hybrid PV-SOFC power generation system has become one feasible solution. The “digital twin”, which integrates physical systems and information technology, offers a new view to deal with the current problems encountered during smart energy development. In particular, an accurate and reliable system model is the basis for achieving this vision. As core components, the reliable modelling of the PV cells and fuel cells (FCs) is crucial to the whole hybrid PV-SOFC power generation system’s optimal and reliable operation, which is based on the reliable identification of unknown model parameters. Hence, in this study, an artificial rabbits optimization (ARO)-based parameter identification strategy was proposed for the accurate modelling of PV cells and SOFCs, which was then validated on the PV double diode model (DDM) and SOFC electrochemical model under various operation scenarios. The simulation results demonstrated that ARO shows a more desirable performance in optimization accuracy and stability compared to other algorithms. For instance, the root mean square error (RMSE) obtained by ARO are 1.81% and 13.11% smaller than that obtained by ABC and WOA algorithms under the DDM of a PV cell. Meanwhile, for SOFC electrochemical model parameter identification under the 5 kW cell stack dataset, the RMSE obtained by ARO was only 2.72% and 4.88% to that of PSO for the (1 atm, 1173 K) and (3 atm, 1273 K) conditions, respectively. By establishing a digital twin model for PV cells and SOFCs, intelligent operation and management of both can be further achieved.

Suggested Citation

  • Zhimin Guo & Zhiyuan Ye & Pengcheng Ni & Can Cao & Xiaozhao Wei & Jian Zhao & Xing He, 2023. "Intelligent Digital Twin Modelling for Hybrid PV-SOFC Power Generation System," Energies, MDPI, vol. 16(6), pages 1-21, March.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:6:p:2806-:d:1100417
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/6/2806/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/6/2806/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yang, Bo & Li, Danyang & Zeng, Chunyuan & Chen, Yijun & Guo, Zhengxun & Wang, Jingbo & Shu, Hongchun & Yu, Tao & Zhu, Jiawei, 2021. "Parameter extraction of PEMFC via Bayesian regularization neural network based meta-heuristic algorithms," Energy, Elsevier, vol. 228(C).
    2. Muangkote, Nipotepat & Sunat, Khamron & Chiewchanwattana, Sirapat & Kaiwinit, Sirilak, 2019. "An advanced onlooker-ranking-based adaptive differential evolution to extract the parameters of solar cell models," Renewable Energy, Elsevier, vol. 134(C), pages 1129-1147.
    3. Fathy, Ahmed & Yousri, Dalia & Alanazi, Turki & Rezk, Hegazy, 2021. "Minimum hydrogen consumption based control strategy of fuel cell/PV/battery/supercapacitor hybrid system using recent approach based parasitism-predation algorithm," Energy, Elsevier, vol. 225(C).
    4. Yang, Bo & Guo, Zhengxun & Yang, Yi & Chen, Yijun & Zhang, Rui & Su, Keyi & Shu, Hongchun & Yu, Tao & Zhang, Xiaoshun, 2021. "Extreme learning machine based meta-heuristic algorithms for parameter extraction of solid oxide fuel cells," Applied Energy, Elsevier, vol. 303(C).
    5. Wang, Jian & Xu, Yi-Peng & She, Chen & Xu, Ping & Bagal, Hamid Asadi, 2022. "Optimal parameter identification of SOFC model using modified gray wolf optimization algorithm," Energy, Elsevier, vol. 240(C).
    6. Oliva, Diego & Cuevas, Erik & Pajares, Gonzalo, 2014. "Parameter identification of solar cells using artificial bee colony optimization," Energy, Elsevier, vol. 72(C), pages 93-102.
    7. Jordehi, A. Rezaee, 2016. "Parameter estimation of solar photovoltaic (PV) cells: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 61(C), pages 354-371.
    8. Wei, Ya & Stanford, Russell J., 2019. "Parameter identification of solid oxide fuel cell by Chaotic Binary Shark Smell Optimization method," Energy, Elsevier, vol. 188(C).
    9. Huang, Ren & Zhang, Sufang & Wang, Peng, 2022. "Key areas and pathways for carbon emissions reduction in Beijing for the “Dual Carbon” targets," Energy Policy, Elsevier, vol. 164(C).
    10. Ghaffari, Abolfazl & Askarzadeh, Alireza, 2020. "Design optimization of a hybrid system subject to reliability level and renewable energy penetration," Energy, Elsevier, vol. 193(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tancredi Testasecca & Manfredi Picciotto Maniscalco & Giovanni Brunaccini & Girolama Airò Farulla & Giuseppina Ciulla & Marco Beccali & Marco Ferraro, 2024. "Toward a Digital Twin of a Solid Oxide Fuel Cell Microcogenerator: Data-Driven Modelling," Energies, MDPI, vol. 17(16), pages 1-15, August.
    2. Bo Yang & Yulin Li & Wei Yao & Lin Jiang & Chuanke Zhang & Chao Duan & Yaxing Ren, 2023. "Optimization and Control of New Power Systems under the Dual Carbon Goals: Key Issues, Advanced Techniques, and Perspectives," Energies, MDPI, vol. 16(9), pages 1-4, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mehmet Yesilbudak, 2021. "Parameter Extraction of Photovoltaic Cells and Modules Using Grey Wolf Optimizer with Dimension Learning-Based Hunting Search Strategy," Energies, MDPI, vol. 14(18), pages 1-27, September.
    2. Tong Kang & Jiangang Yao & Min Jin & Shengjie Yang & ThanhLong Duong, 2018. "A Novel Improved Cuckoo Search Algorithm for Parameter Estimation of Photovoltaic (PV) Models," Energies, MDPI, vol. 11(5), pages 1-31, April.
    3. Fathy, Ahmed & Babu, Thanikanti Sudhakar & Abdelkareem, Mohammad Ali & Rezk, Hegazy & Yousri, Dalia, 2022. "Recent approach based heterogeneous comprehensive learning Archimedes optimization algorithm for identifying the optimal parameters of different fuel cells," Energy, Elsevier, vol. 248(C).
    4. Pillai, Dhanup S. & Rajasekar, N., 2018. "Metaheuristic algorithms for PV parameter identification: A comprehensive review with an application to threshold setting for fault detection in PV systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3503-3525.
    5. Martin Ćalasan & Dražen Jovanović & Vesna Rubežić & Saša Mujović & Slobodan Đukanović, 2019. "Estimation of Single-Diode and Two-Diode Solar Cell Parameters by Using a Chaotic Optimization Approach," Energies, MDPI, vol. 12(21), pages 1-14, November.
    6. Li, Shuijia & Gong, Wenyin & Gu, Qiong, 2021. "A comprehensive survey on meta-heuristic algorithms for parameter extraction of photovoltaic models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    7. Wang, Gang & Zhao, Ke & Shi, Jiangtao & Chen, Wei & Zhang, Haiyang & Yang, Xinsheng & Zhao, Yong, 2017. "An iterative approach for modeling photovoltaic modules without implicit equations," Applied Energy, Elsevier, vol. 202(C), pages 189-198.
    8. Wu, Lijun & Chen, Zhicong & Long, Chao & Cheng, Shuying & Lin, Peijie & Chen, Yixiang & Chen, Huihuang, 2018. "Parameter extraction of photovoltaic models from measured I-V characteristics curves using a hybrid trust-region reflective algorithm," Applied Energy, Elsevier, vol. 232(C), pages 36-53.
    9. Ridha, Hussein Mohammed & Hizam, Hashim & Gomes, Chandima & Heidari, Ali Asghar & Chen, Huiling & Ahmadipour, Masoud & Muhsen, Dhiaa Halboot & Alghrairi, Mokhalad, 2021. "Parameters extraction of three diode photovoltaic models using boosted LSHADE algorithm and Newton Raphson method," Energy, Elsevier, vol. 224(C).
    10. Arooj Tariq Kiani & Muhammad Faisal Nadeem & Ali Ahmed & Irfan Khan & Rajvikram Madurai Elavarasan & Narottam Das, 2020. "Optimal PV Parameter Estimation via Double Exponential Function-Based Dynamic Inertia Weight Particle Swarm Optimization," Energies, MDPI, vol. 13(15), pages 1-26, August.
    11. Diego Oliva & Ahmed A. Ewees & Mohamed Abd El Aziz & Aboul Ella Hassanien & Marco Peréz-Cisneros, 2017. "A Chaotic Improved Artificial Bee Colony for Parameter Estimation of Photovoltaic Cells," Energies, MDPI, vol. 10(7), pages 1-19, June.
    12. Ram Ishwar Vais & Kuldeep Sahay & Tirumalasetty Chiranjeevi & Ramesh Devarapalli & Łukasz Knypiński, 2023. "Parameter Extraction of Solar Photovoltaic Modules Using a Novel Bio-Inspired Swarm Intelligence Optimisation Algorithm," Sustainability, MDPI, vol. 15(10), pages 1-27, May.
    13. Benkercha, Rabah & Moulahoum, Samir & Taghezouit, Bilal, 2019. "Extraction of the PV modules parameters with MPP estimation using the modified flower algorithm," Renewable Energy, Elsevier, vol. 143(C), pages 1698-1709.
    14. Ebrahimi, S. Mohammadreza & Salahshour, Esmaeil & Malekzadeh, Milad & Francisco Gordillo,, 2019. "Parameters identification of PV solar cells and modules using flexible particle swarm optimization algorithm," Energy, Elsevier, vol. 179(C), pages 358-372.
    15. Adeel, Muhammad & Hassan, Ahmad Kamal & Sher, Hadeed Ahmed & Murtaza, Ali Faisal, 2021. "A grade point average assessment of analytical and numerical methods for parameter extraction of a practical PV device," Renewable and Sustainable Energy Reviews, Elsevier, vol. 142(C).
    16. Habib Satria & Rahmad B. Y. Syah & Moncef L. Nehdi & Monjee K. Almustafa & Abdelrahman Omer Idris Adam, 2023. "Parameters Identification of Solar PV Using Hybrid Chaotic Northern Goshawk and Pattern Search," Sustainability, MDPI, vol. 15(6), pages 1-24, March.
    17. Arooj Tariq Kiani & Muhammad Faisal Nadeem & Ali Ahmed & Irfan A. Khan & Hend I. Alkhammash & Intisar Ali Sajjad & Babar Hussain, 2021. "An Improved Particle Swarm Optimization with Chaotic Inertia Weight and Acceleration Coefficients for Optimal Extraction of PV Models Parameters," Energies, MDPI, vol. 14(11), pages 1-24, May.
    18. Li, Fuxiang & Wu, Wei, 2022. "Coupled electrical-thermal performance estimation of photovoltaic devices: A transient multiphysics framework with robust parameter extraction and 3-D thermal analysis," Applied Energy, Elsevier, vol. 319(C).
    19. Samuel R. Fahim & Hany M. Hasanien & Rania A. Turky & Shady H. E. Abdel Aleem & Martin Ćalasan, 2022. "A Comprehensive Review of Photovoltaic Modules Models and Algorithms Used in Parameter Extraction," Energies, MDPI, vol. 15(23), pages 1-56, November.
    20. Jiao, Shan & Chong, Guoshuang & Huang, Changcheng & Hu, Hanqing & Wang, Mingjing & Heidari, Ali Asghar & Chen, Huiling & Zhao, Xuehua, 2020. "Orthogonally adapted Harris hawks optimization for parameter estimation of photovoltaic models," Energy, Elsevier, vol. 203(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:6:p:2806-:d:1100417. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.