IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v35y2010i2p729-739.html
   My bibliography  Save this article

A methodology of computation, design and optimization of solar Stirling power plant using hydrogen/oxygen fuel cells

Author

Listed:
  • Petrescu, Stoian
  • Petre, Camelia
  • Costea, Monica
  • Malancioiu, Octavian
  • Boriaru, Nicolae
  • Dobrovicescu, Alexandru
  • Feidt, Michel
  • Harman, Charles

Abstract

The objective of this paper is to develop a methodology to determine how many houses could be fueled from the solar energy captured by a number of solar Stirling modules (with a fixed dish area per module) and also to determine the minimum necessary area of the fuel cell to ensure the amount of power needed to meet daily energy use requirements. The detailed method includes the effect of the fuel cell efficiency function on the power consumption of the user. Experimental data from our laboratory are used to determine the fuel cell efficiency as a function of the electric current density for a specific power demand. As an illustrative example, the analysis is applied to a residential area having a specific electrical demand. Using the developed method, the number of houses that could be fueled directly by the stored hydrogen is determined, and also the minim fuel cell area required.

Suggested Citation

  • Petrescu, Stoian & Petre, Camelia & Costea, Monica & Malancioiu, Octavian & Boriaru, Nicolae & Dobrovicescu, Alexandru & Feidt, Michel & Harman, Charles, 2010. "A methodology of computation, design and optimization of solar Stirling power plant using hydrogen/oxygen fuel cells," Energy, Elsevier, vol. 35(2), pages 729-739.
  • Handle: RePEc:eee:energy:v:35:y:2010:i:2:p:729-739
    DOI: 10.1016/j.energy.2009.10.036
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544209004708
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2009.10.036?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hou, Yongping & Zhuang, Mingxi & Wan, Gang, 2007. "The analysis for the efficiency properties of the fuel cell engine," Renewable Energy, Elsevier, vol. 32(7), pages 1175-1186.
    2. Perry, Simon & Klemeš, Jiří & Bulatov, Igor, 2008. "Integrating waste and renewable energy to reduce the carbon footprint of locally integrated energy sectors," Energy, Elsevier, vol. 33(10), pages 1489-1497.
    3. Lund, Henrik & Duić, Neven & Krajac˘ić, Goran & Graça Carvalho, Maria da, 2007. "Two energy system analysis models: A comparison of methodologies and results," Energy, Elsevier, vol. 32(6), pages 948-954.
    4. Edwards, P.P. & Kuznetsov, V.L. & David, W.I.F. & Brandon, N.P., 2008. "Hydrogen and fuel cells: Towards a sustainable energy future," Energy Policy, Elsevier, vol. 36(12), pages 4356-4362, December.
    5. Barbir, Frano, 2009. "Transition to renewable energy systems with hydrogen as an energy carrier," Energy, Elsevier, vol. 34(3), pages 308-312.
    6. Lund, Henrik, 2007. "Renewable energy strategies for sustainable development," Energy, Elsevier, vol. 32(6), pages 912-919.
    7. Brown, James E. & Hendry, Chris N. & Harborne, Paul, 2007. "An emerging market in fuel cells? Residential combined heat and power in four countries," Energy Policy, Elsevier, vol. 35(4), pages 2173-2186, April.
    8. Neef, H.-J., 2009. "International overview of hydrogen and fuel cell research," Energy, Elsevier, vol. 34(3), pages 327-333.
    9. Schäfer, Andreas & Heywood, John B. & Weiss, Malcolm A., 2006. "Future fuel cell and internal combustion engine automobile technologies: A 25-year life cycle and fleet impact assessment," Energy, Elsevier, vol. 31(12), pages 2064-2087.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kumar, Anil & Prakash, Om & Dube, Akarshi, 2017. "A review on progress of concentrated solar power in India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 304-307.
    2. Gupta, M.K. & Kaushik, S.C. & Ranjan, K.R. & Panwar, N.L. & Reddy, V. Siva & Tyagi, S.K., 2015. "Thermodynamic performance evaluation of solar and other thermal power generation systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 567-582.
    3. Cheng, Chin-Hsiang & Yang, Hang-Suin & Keong, Lam, 2013. "Theoretical and experimental study of a 300-W beta-type Stirling engine," Energy, Elsevier, vol. 59(C), pages 590-599.
    4. Wei, Ya & Stanford, Russell J., 2019. "Parameter identification of solid oxide fuel cell by Chaotic Binary Shark Smell Optimization method," Energy, Elsevier, vol. 188(C).
    5. Ángel Encalada-Dávila & Samir Echeverría & Jordy Santana-Villamar & Gabriel Cedeño & Mayken Espinoza-Andaluz, 2021. "Optimization Algorithms: Optimal Parameters Computation for Modeling the Polarization Curves of a PEFC Considering the Effect of the Relative Humidity," Energies, MDPI, vol. 14(18), pages 1-21, September.
    6. Siva Reddy, V. & Kaushik, S.C. & Ranjan, K.R. & Tyagi, S.K., 2013. "State-of-the-art of solar thermal power plants—A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 258-273.
    7. Cheng, Chin-Hsiang & Yang, Hang-Suin, 2011. "Analytical model for predicting the effect of operating speed on shaft power output of Stirling engines," Energy, Elsevier, vol. 36(10), pages 5899-5908.
    8. Patel, Vivek & Savsani, Vimal & Mudgal, Anurag, 2017. "Many-objective thermodynamic optimization of Stirling heat engine," Energy, Elsevier, vol. 125(C), pages 629-642.
    9. Li, Ruijie & Grosu, Lavinia & Li, Wei, 2017. "New polytropic model to predict the performance of beta and gamma type Stirling engine," Energy, Elsevier, vol. 128(C), pages 62-76.
    10. Azzouzi, Djelloul & Boumeddane, Boussad & Abene, Abderahmane, 2017. "Experimental and analytical thermal analysis of cylindrical cavity receiver for solar dish," Renewable Energy, Elsevier, vol. 106(C), pages 111-121.
    11. Ahmadi, Mohammad H. & Ahmadi, Mohammad-Ali & Pourfayaz, Fathollah, 2017. "Thermal models for analysis of performance of Stirling engine: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P1), pages 168-184.
    12. Ahmadi, Mohammad H. & Ahmadi, Mohammad Ali & Pourfayaz, Fathollah & Hosseinzade, Hadi & Acıkkalp, Emin & Tlili, Iskander & Feidt, Michel, 2016. "Designing a powered combined Otto and Stirling cycle power plant through multi-objective optimization approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 585-595.
    13. Tlili, I. & Vakkar, Ali, 2020. "Thermodynamic analysis and optimization of solar thermal engine: Performance enhancement," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 540(C).
    14. Cheng, Chin-Hsiang & Yang, Hang-Suin, 2013. "Theoretical model for predicting thermodynamic behavior of thermal-lag Stirling engine," Energy, Elsevier, vol. 49(C), pages 218-228.
    15. Cheng, Chin-Hsiang & Yang, Hang-Suin, 2014. "Optimization of rhombic drive mechanism used in beta-type Stirling engine based on dimensionless analysis," Energy, Elsevier, vol. 64(C), pages 970-978.
    16. Patel, Vivek & Savsani, Vimal, 2016. "Multi-objective optimization of a Stirling heat engine using TS-TLBO (tutorial training and self learning inspired teaching-learning based optimization) algorithm," Energy, Elsevier, vol. 95(C), pages 528-541.
    17. Ahmadi, Mohammad H. & Hosseinzade, Hadi & Sayyaadi, Hoseyn & Mohammadi, Amir H. & Kimiaghalam, Farshad, 2013. "Application of the multi-objective optimization method for designing a powered Stirling heat engine: Design with maximized power, thermal efficiency and minimized pressure loss," Renewable Energy, Elsevier, vol. 60(C), pages 313-322.
    18. Hesham Alhumade & Ahmed Fathy & Abdulrahim Al-Zahrani & Muhyaddin Jamal Rawa & Hegazy Rezk, 2021. "Optimal Parameter Estimation Methodology of Solid Oxide Fuel Cell Using Modern Optimization," Mathematics, MDPI, vol. 9(9), pages 1-19, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, Wen & Hu, Weihao & Lund, Henrik & Chen, Zhe, 2013. "Electric vehicles and large-scale integration of wind power – The case of Inner Mongolia in China," Applied Energy, Elsevier, vol. 104(C), pages 445-456.
    2. Krajacic, Goran & Duic, Neven & Carvalho, Maria da Graça, 2011. "How to achieve a 100% RES electricity supply for Portugal?," Applied Energy, Elsevier, vol. 88(2), pages 508-517, February.
    3. Lin, Kuang C. & Lin, Yuan-Chung & Hsiao, Yi-Hsing, 2014. "Microwave plasma studies of Spirulina algae pyrolysis with relevance to hydrogen production," Energy, Elsevier, vol. 64(C), pages 567-574.
    4. Siavash Asiaban & Nezmin Kayedpour & Arash E. Samani & Dimitar Bozalakov & Jeroen D. M. De Kooning & Guillaume Crevecoeur & Lieven Vandevelde, 2021. "Wind and Solar Intermittency and the Associated Integration Challenges: A Comprehensive Review Including the Status in the Belgian Power System," Energies, MDPI, vol. 14(9), pages 1-41, May.
    5. Shuit, S.H. & Tan, K.T. & Lee, K.T. & Kamaruddin, A.H., 2009. "Oil palm biomass as a sustainable energy source: A Malaysian case study," Energy, Elsevier, vol. 34(9), pages 1225-1235.
    6. Tarroja, Brian & Mueller, Fabian & Eichman, Joshua D. & Samuelsen, Scott, 2012. "Metrics for evaluating the impacts of intermittent renewable generation on utility load-balancing," Energy, Elsevier, vol. 42(1), pages 546-562.
    7. Frédéric Babonneau & Alain Haurie & Guillaume Jean Tarel & Julien Thénié, 2012. "Assessing the Future of Renewable and Smart Grid Technologies in Regional Energy Systems," Swiss Journal of Economics and Statistics (SJES), Swiss Society of Economics and Statistics (SSES), vol. 148(II), pages 229-273, June.
    8. Pousinho, H.M.I. & Mendes, V.M.F. & Catalão, J.P.S., 2011. "A risk-averse optimization model for trading wind energy in a market environment under uncertainty," Energy, Elsevier, vol. 36(8), pages 4935-4942.
    9. I. Aleknaviciute & T.G. Karayiannis & M.W. Collins & C. Xanthos, 2016. "Towards clean and sustainable distributed energy system: the potential of integrated PEMFC-CHP," International Journal of Low-Carbon Technologies, Oxford University Press, vol. 11(3), pages 296-304.
    10. Mehra, Roopesh Kumar & Duan, Hao & Juknelevičius, Romualdas & Ma, Fanhua & Li, Junyin, 2017. "Progress in hydrogen enriched compressed natural gas (HCNG) internal combustion engines - A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 1458-1498.
    11. Hagos, Dejene Assefa & Gebremedhin, Alemayehu & Zethraeus, Björn, 2014. "Towards a flexible energy system – A case study for Inland Norway," Applied Energy, Elsevier, vol. 130(C), pages 41-50.
    12. Yanine, Franco F. & Sauma, Enzo E., 2013. "Review of grid-tie micro-generation systems without energy storage: Towards a new approach to sustainable hybrid energy systems linked to energy efficiency," Renewable and Sustainable Energy Reviews, Elsevier, vol. 26(C), pages 60-95.
    13. Kou, Huaqin & Luo, Wenhua & Huang, Zhiyong & Sang, Ge & Meng, Daqiao & Zhang, Guanghui & Chen, Changan & Luo, Deli & Hu, Changwen, 2015. "Fabrication and experimental validation of a full-scale depleted uranium bed with thin double-layered annulus configuration for hydrogen isotopes recovery and delivery," Energy, Elsevier, vol. 90(P1), pages 588-594.
    14. Bove, Roberto & Bucher, Matthias & Ferretti, Fabio, 2012. "Integrating large shares of wind energy in macro-economical cost-effective way," Energy, Elsevier, vol. 43(1), pages 438-447.
    15. Sharma, Sunita & Ghoshal, Sib Krishna, 2015. "Hydrogen the future transportation fuel: From production to applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 1151-1158.
    16. Østergaard, P.A. & Lund, H. & Thellufsen, J.Z. & Sorknæs, P. & Mathiesen, B.V., 2022. "Review and validation of EnergyPLAN," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    17. Sieben, J.M. & Morallón, E. & Cazorla-Amorós, D., 2013. "Flexible ruthenium oxide-activated carbon cloth composites prepared by simple electrodeposition methods," Energy, Elsevier, vol. 58(C), pages 519-526.
    18. Zappini, Giovanni & Cocca, Paola & Rossi, Diana, 2010. "Performance analysis of energy recovery in an Italian municipal solid waste landfill," Energy, Elsevier, vol. 35(12), pages 5063-5069.
    19. Dai, Hancheng & Fujimori, Shinichiro & Silva Herran, Diego & Shiraki, Hiroto & Masui, Toshihiko & Matsuoka, Yuzuru, 2017. "The impacts on climate mitigation costs of considering curtailment and storage of variable renewable energy in a general equilibrium model," Energy Economics, Elsevier, vol. 64(C), pages 627-637.
    20. Lam, Hon Loong & Varbanov, Petar Sabev & Klemes, Jirí Jaromír, 2011. "Regional renewable energy and resource planning," Applied Energy, Elsevier, vol. 88(2), pages 545-550, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:35:y:2010:i:2:p:729-739. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.