IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v235y2024ics0960148124013703.html
   My bibliography  Save this article

Techno-economic evaluation of biogas-fed SOFC systems with novel biogas purification and carbon capture technologies

Author

Listed:
  • Ma, Chun
  • Yu, Hangyu
  • Monticone, Gianluca
  • Ma, Shuai
  • Van herle, Jan
  • Wang, Ligang

Abstract

Small-scale biogas-fed solid oxide fuel cell (SOFC) systems, integrated with carbon capture storage (CCS) technologies, offer a sustainable solution for European farms’ heat and power demands with minimal carbon emissions. This study investigates different system configurations ranging from 20 to 200 kW, incorporating heat integration, fuel recirculation, biogas purification and CCS. Two scenarios are evaluated: an SOFC subsystem (1) with cryogenic biogas purification and a sodium carbonate loop for CCS, and (2) with dual sodium carbonate loops for biogas purification and CCS. Key performance metrics, such as system efficiency and levelized cost of electricity (LCOE), were assessed. At 60% recirculation ratio, 650 °C reforming temperature, and 85% fuel utilization, SOFC system electrical achieved the highest efficiency of 65%, with overall system efficiency of 53.6% (first configuration) and 57.4% (second configuration). Scaling effect reduced the LCOE of the first scenario from 0.165 €/kWh (20 kW) to 0.123 (200 kW), and the second scenario from 0.150 €/kWh (20 kW) to 0.116 €/kWh (200 kW). The cost breakdown reveals a significant investment cost from stack replacements. The study suggests that the optimized small-scale biogas-fed SOFC systems with CCS are viable for decentralized heat and power generation.

Suggested Citation

  • Ma, Chun & Yu, Hangyu & Monticone, Gianluca & Ma, Shuai & Van herle, Jan & Wang, Ligang, 2024. "Techno-economic evaluation of biogas-fed SOFC systems with novel biogas purification and carbon capture technologies," Renewable Energy, Elsevier, vol. 235(C).
  • Handle: RePEc:eee:renene:v:235:y:2024:i:c:s0960148124013703
    DOI: 10.1016/j.renene.2024.121302
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148124013703
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2024.121302?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:235:y:2024:i:c:s0960148124013703. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.