IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v9y2021i9p1066-d551282.html
   My bibliography  Save this article

Optimal Parameter Estimation Methodology of Solid Oxide Fuel Cell Using Modern Optimization

Author

Listed:
  • Hesham Alhumade

    (Department of Chemical and Materials Engineering, Faculty of Engineering, King Abdulaziz University, Jeddah 21589, Saudi Arabia
    Center of Research Excellence in Renewable Energy and Power systems, King Abdulaziz University, Jeddah 21589, Saudi Arabia)

  • Ahmed Fathy

    (Electrical Engineering Department, Faculty of Engineering, Jouf University, Sakaka 72388, Saudi Arabia
    Electrical Power and Machine Department, Faculty of Engineering, Zagazig University, Zagazig 44519, Egypt)

  • Abdulrahim Al-Zahrani

    (Department of Chemical and Materials Engineering, Faculty of Engineering, King Abdulaziz University, Jeddah 21589, Saudi Arabia)

  • Muhyaddin Jamal Rawa

    (Center of Research Excellence in Renewable Energy and Power systems, King Abdulaziz University, Jeddah 21589, Saudi Arabia
    Department of Electrical and Computer Engineering, Faculty of Engineering, King Abdulaziz University, Jeddah 21589, Saudi Arabia)

  • Hegazy Rezk

    (College of Engineering at Wadi Addawaser, Prince Sattam Bin Abdulaziz University, Al-Kharj 11911, Saudi Arabia
    Electrical Engineering Department, Faculty of Engineering, Minia University, Minia 61517, Egypt)

Abstract

An optimal parameter estimation methodology of solid oxide fuel cell (SOFC) using modern optimization is proposed in this paper. An equilibrium optimizer (EO) has been used to identify the unidentified parameters of the SOFC equivalent circuit with the assistance of experimental results. This is presented via formulating the modeling process as an optimization problem considering the sum mean squared error (SMSE) between the observed and computed voltages as the target. Two modes of the SOFC-based model are investigated under variable operating conditions, namely, the steady-state and the dynamic-state based models. The proposed EO results are compared to those obtained via the Archimedes optimization algorithm (AOA), Heap-based optimizer (HBO), Seagull Optimization Algorithm (SOA), Student Psychology Based Optimization Algorithm (SPBO), Marine predator algorithm (MPA), Manta ray foraging optimization (MRFO), and comprehensive learning dynamic multi-swarm marine predators algorithm. The minimum fitness function at the steady-state model is obtained via the proposed EO with value of 1.5527 × 10 −6 at 1173 K. In the dynamic based model, the minimum SMSE is 1.0406. The obtained results confirmed the reliability and superiority of the proposed EO in constructing a reliable model of SOFC.

Suggested Citation

  • Hesham Alhumade & Ahmed Fathy & Abdulrahim Al-Zahrani & Muhyaddin Jamal Rawa & Hegazy Rezk, 2021. "Optimal Parameter Estimation Methodology of Solid Oxide Fuel Cell Using Modern Optimization," Mathematics, MDPI, vol. 9(9), pages 1-19, May.
  • Handle: RePEc:gam:jmathe:v:9:y:2021:i:9:p:1066-:d:551282
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/9/9/1066/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/9/9/1066/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Nassef, Ahmed M. & Fathy, Ahmed & Sayed, Enas Taha & Abdelkareem, Mohammad Ali & Rezk, Hegazy & Tanveer, Waqas Hassan & Olabi, A.G., 2019. "Maximizing SOFC performance through optimal parameters identification by modern optimization algorithms," Renewable Energy, Elsevier, vol. 138(C), pages 458-464.
    2. El-Hay, E.A. & El-Hameed, M.A. & El-Fergany, A.A., 2019. "Optimized Parameters of SOFC for steady state and transient simulations using interior search algorithm," Energy, Elsevier, vol. 166(C), pages 451-461.
    3. Ramadhani, F. & Hussain, M.A. & Mokhlis, H. & Hajimolana, S., 2017. "Optimization strategies for Solid Oxide Fuel Cell (SOFC) application: A literature survey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 460-484.
    4. Wei, Zhongbao & Meng, Shujuan & Xiong, Binyu & Ji, Dongxu & Tseng, King Jet, 2016. "Enhanced online model identification and state of charge estimation for lithium-ion battery with a FBCRLS based observer," Applied Energy, Elsevier, vol. 181(C), pages 332-341.
    5. Fathy, Ahmed & Rezk, Hegazy & Mohamed Ramadan, Haitham Saad, 2020. "Recent moth-flame optimizer for enhanced solid oxide fuel cell output power via optimal parameters extraction process," Energy, Elsevier, vol. 207(C).
    6. Wei, Zhongbao & Zhao, Difan & He, Hongwen & Cao, Wanke & Dong, Guangzhong, 2020. "A noise-tolerant model parameterization method for lithium-ion battery management system," Applied Energy, Elsevier, vol. 268(C).
    7. El-Hay, Enas A. & El-Hameed, Mohamed A. & El-Fergany, Attia A., 2018. "Performance enhancement of autonomous system comprising proton exchange membrane fuel cells and switched reluctance motor," Energy, Elsevier, vol. 163(C), pages 699-711.
    8. Rokni, M., 2017. "Addressing fuel recycling in solid oxide fuel cell systems fed by alternative fuels," Energy, Elsevier, vol. 137(C), pages 1013-1025.
    9. van Biert, L. & Godjevac, M. & Visser, K. & Aravind, P.V., 2019. "Dynamic modelling of a direct internal reforming solid oxide fuel cell stack based on single cell experiments," Applied Energy, Elsevier, vol. 250(C), pages 976-990.
    10. Petrescu, Stoian & Petre, Camelia & Costea, Monica & Malancioiu, Octavian & Boriaru, Nicolae & Dobrovicescu, Alexandru & Feidt, Michel & Harman, Charles, 2010. "A methodology of computation, design and optimization of solar Stirling power plant using hydrogen/oxygen fuel cells," Energy, Elsevier, vol. 35(2), pages 729-739.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fathy, Ahmed & Babu, Thanikanti Sudhakar & Abdelkareem, Mohammad Ali & Rezk, Hegazy & Yousri, Dalia, 2022. "Recent approach based heterogeneous comprehensive learning Archimedes optimization algorithm for identifying the optimal parameters of different fuel cells," Energy, Elsevier, vol. 248(C).
    2. El-Hay, E.A. & El-Hameed, M.A. & El-Fergany, A.A., 2019. "Optimized Parameters of SOFC for steady state and transient simulations using interior search algorithm," Energy, Elsevier, vol. 166(C), pages 451-461.
    3. Hachana, Oussama & El-Fergany, Attia A., 2022. "Efficient PEM fuel cells parameters identification using hybrid artificial bee colony differential evolution optimizer," Energy, Elsevier, vol. 250(C).
    4. Mohammadmahdi Ghiji & Vasily Novozhilov & Khalid Moinuddin & Paul Joseph & Ian Burch & Brigitta Suendermann & Grant Gamble, 2020. "A Review of Lithium-Ion Battery Fire Suppression," Energies, MDPI, vol. 13(19), pages 1-30, October.
    5. Liu, Lijun & Qian, Jin & Hua, Li & Zhang, Bin, 2022. "System estimation of the SOFCs using fractional-order social network search algorithm," Energy, Elsevier, vol. 255(C).
    6. Fathy, Ahmed & Rezk, Hegazy, 2022. "Political optimizer based approach for estimating SOFC optimal parameters for static and dynamic models," Energy, Elsevier, vol. 238(PC).
    7. Yang, Bo & Guo, Zhengxun & Yang, Yi & Chen, Yijun & Zhang, Rui & Su, Keyi & Shu, Hongchun & Yu, Tao & Zhang, Xiaoshun, 2021. "Extreme learning machine based meta-heuristic algorithms for parameter extraction of solid oxide fuel cells," Applied Energy, Elsevier, vol. 303(C).
    8. Wei, Ya & Stanford, Russell J., 2019. "Parameter identification of solid oxide fuel cell by Chaotic Binary Shark Smell Optimization method," Energy, Elsevier, vol. 188(C).
    9. Farnak, M. & Esfahani, J.A. & Bozorgmehri, S., 2020. "An experimental design of the solid oxide fuel cell performance by using partially oxidation reforming of natural gas," Renewable Energy, Elsevier, vol. 147(P1), pages 155-163.
    10. Mohamed Louzazni & Sameer Al-Dahidi & Marco Mussetta, 2020. "Fuel Cell Characteristic Curve Approximation Using the Bézier Curve Technique," Sustainability, MDPI, vol. 12(19), pages 1-23, October.
    11. Abdel-Basset, Mohamed & Mohamed, Reda & El-Fergany, Attia & Chakrabortty, Ripon K. & Ryan, Michael J., 2021. "Adaptive and efficient optimization model for optimal parameters of proton exchange membrane fuel cells: A comprehensive analysis," Energy, Elsevier, vol. 233(C).
    12. Wang, Jian & Xu, Yi-Peng & She, Chen & Xu, Ping & Bagal, Hamid Asadi, 2022. "Optimal parameter identification of SOFC model using modified gray wolf optimization algorithm," Energy, Elsevier, vol. 240(C).
    13. Fathy, Ahmed & Rezk, Hegazy & Mohamed Ramadan, Haitham Saad, 2020. "Recent moth-flame optimizer for enhanced solid oxide fuel cell output power via optimal parameters extraction process," Energy, Elsevier, vol. 207(C).
    14. He, Qiang & Yang, Yang & Luo, Chang & Zhai, Jun & Luo, Ronghua & Fu, Chunyun, 2022. "Energy recovery strategy optimization of dual-motor drive electric vehicle based on braking safety and efficient recovery," Energy, Elsevier, vol. 248(C).
    15. Shujuan Meng & Binyu Xiong & Tuti Mariana Lim, 2019. "Model-Based Condition Monitoring of a Vanadium Redox Flow Battery," Energies, MDPI, vol. 12(15), pages 1-16, August.
    16. Zhao, Shuchun & Guo, Junheng & Dang, Xiuhu & Ai, Bingyan & Zhang, Minqing & Li, Wei & Zhang, Jinli, 2022. "Energy consumption, flow characteristics and energy-efficient design of cup-shape blade stirred tank reactors: Computational fluid dynamics and artificial neural network investigation," Energy, Elsevier, vol. 240(C).
    17. Xiong, Wei & Xie, Fang & Xu, Gang & Li, Yumei & Li, Ben & Mo, Yimin & Ma, Fei & Wei, Keke, 2023. "Co-estimation of the model parameter and state of charge for retired lithium-ion batteries over a wide temperature range and battery degradation scope," Renewable Energy, Elsevier, vol. 218(C).
    18. Liu, Yongjie & Huang, Zhiwu & Wu, Yue & Yan, Lisen & Jiang, Fu & Peng, Jun, 2022. "An online hybrid estimation method for core temperature of Lithium-ion battery with model noise compensation," Applied Energy, Elsevier, vol. 327(C).
    19. Zapata-Ramírez, Víctor & Rosendo-Santos, Paula & Amador, Ulises & Ritter, Clemens & Mather, Glenn C. & Pérez-Coll, Domingo, 2022. "Optimisation of high-performance, cobalt-free SrFe1-xMoxO3-δ cathodes for solid oxide fuel cells prepared by spray pyrolysis," Renewable Energy, Elsevier, vol. 185(C), pages 1167-1176.
    20. Xu, Yuan-wu & Wu, Xiao-long & Zhong, Xiao-bo & Zhao, Dong-qi & Sorrentino, Marco & Jiang, Jianhua & Jiang, Chang & Fu, Xiaowei & Li, Xi, 2021. "Mechanism model-based and data-driven approach for the diagnosis of solid oxide fuel cell stack leakage," Applied Energy, Elsevier, vol. 286(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:9:y:2021:i:9:p:1066-:d:551282. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.