IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v185y2017ip2p1604-1612.html
   My bibliography  Save this article

Simulation on the performance and free cooling potential of the thermosyphon mode in an integrated system of mechanical refrigeration and thermosyphon

Author

Listed:
  • Zhang, Hainan
  • Shao, Shuangquan
  • Xu, Hongbo
  • Zou, Huiming
  • Tang, Mingsheng
  • Tian, Changqing

Abstract

Free cooling based on thermosyphon is a promising technology for energy-saving in data centers. Integrated system of mechanical refrigeration and thermosyphon does not need auxiliary refrigeration system, therefore it is an ideal way of free cooling based on thermosyphon. To study its free cooling performance and potential, it is built that a distributed-parameter model of the thermosyphon mode in an integrated system of mechanical refrigeration and thermosyphon and validated by experimental data. The simulation results show that the cooling capacity and circulation flow rate increase with the increase of height difference mainly due to higher driving force of gravity, while the increase is little when the height difference is higher than 0.5m. The cooling capacity and circulation flow rate decrease with the increase of connection pipe length due to higher flow resistance, therefore the connection pipe should be as short as possible. The cooling capacity increases rapidly with the temperature difference and reaches 5.3kW when the temperature difference is 15°C, with an EER of 14.3. Also with the performance model and weather data of China, annual free cooling potential in China and corresponding energy-saving and economic benefits are analyzed. For the studied cities in China except those in the hot summer & warm winter zone, the free cooling percentages are approximately 30–70%, the annual energy-saving rates are 16–49% and the payback period is 1.7–4.3years. Therefore, free cooling based on integrated system of mechanical refrigeration and thermosyphon has great application potential for energy-saving of data centers.

Suggested Citation

  • Zhang, Hainan & Shao, Shuangquan & Xu, Hongbo & Zou, Huiming & Tang, Mingsheng & Tian, Changqing, 2017. "Simulation on the performance and free cooling potential of the thermosyphon mode in an integrated system of mechanical refrigeration and thermosyphon," Applied Energy, Elsevier, vol. 185(P2), pages 1604-1612.
  • Handle: RePEc:eee:appene:v:185:y:2017:i:p2:p:1604-1612
    DOI: 10.1016/j.apenergy.2016.01.053
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261916300332
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2016.01.053?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Liang, Xia & Chan, M.Y. & Shiming, Deng, 2008. "Development of a method for calculating steady-state equipment sensible heat ratio of direct expansion air conditioning units," Applied Energy, Elsevier, vol. 85(12), pages 1198-1207, December.
    2. Zhang, Hainan & Shao, Shuangquan & Xu, Hongbo & Zou, Huiming & Tian, Changqing, 2014. "Free cooling of data centers: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 35(C), pages 171-182.
    3. Kim, Min-Hwi & Ham, Sang-Woo & Park, Jun-Seok & Jeong, Jae-Weon, 2014. "Impact of integrated hot water cooling and desiccant-assisted evaporative cooling systems on energy savings in a data center," Energy, Elsevier, vol. 78(C), pages 384-396.
    4. Zhang, Penglei & Wang, Baolong & Shi, Wenxing & Li, Xianting, 2015. "Experimental investigation on two-phase thermosyphon loop with partially liquid-filled downcomer," Applied Energy, Elsevier, vol. 160(C), pages 10-17.
    5. Garimella, Suresh V. & Persoons, Tim & Weibel, Justin & Yeh, Lian-Tuu, 2013. "Technological drivers in data centers and telecom systems: Multiscale thermal, electrical, and energy management," Applied Energy, Elsevier, vol. 107(C), pages 66-80.
    6. Wu, Wei & Wang, Baolong & Shi, Wenxing & Li, Xianting, 2014. "Absorption heating technologies: A review and perspective," Applied Energy, Elsevier, vol. 130(C), pages 51-71.
    7. Durand-Estebe, Baptiste & Le Bot, Cédric & Mancos, Jean Nicolas & Arquis, Eric, 2014. "Simulation of a temperature adaptive control strategy for an IWSE economizer in a data center," Applied Energy, Elsevier, vol. 134(C), pages 45-56.
    8. Chua, K.J. & Chou, S.K. & Yang, W.M. & Yan, J., 2013. "Achieving better energy-efficient air conditioning – A review of technologies and strategies," Applied Energy, Elsevier, vol. 104(C), pages 87-104.
    9. Chua, K.J. & Chou, S.K. & Yang, W.M., 2010. "Advances in heat pump systems: A review," Applied Energy, Elsevier, vol. 87(12), pages 3611-3624, December.
    10. Ham, Sang-Woo & Kim, Min-Hwi & Choi, Byung-Nam & Jeong, Jae-Weon, 2015. "Energy saving potential of various air-side economizers in a modular data center," Applied Energy, Elsevier, vol. 138(C), pages 258-275.
    11. Siriwardana, Jayantha & Jayasekara, Saliya & Halgamuge, Saman K., 2013. "Potential of air-side economizers for data center cooling: A case study for key Australian cities," Applied Energy, Elsevier, vol. 104(C), pages 207-219.
    12. Ebrahimi, Khosrow & Jones, Gerard F. & Fleischer, Amy S., 2015. "Thermo-economic analysis of steady state waste heat recovery in data centers using absorption refrigeration," Applied Energy, Elsevier, vol. 139(C), pages 384-397.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tong, Zhen & Liu, Xiao-Hua & Jiang, Yi, 2017. "Experimental study of the self-regulating performance of an R744 two-phase thermosyphon loop," Applied Energy, Elsevier, vol. 186(P1), pages 1-12.
    2. Cao, Jingyu & Hong, Xiaoqiang & Zheng, Zhanying & Asim, Muhammad & Hu, Mingke & Wang, Qiliang & Pei, Gang & Leung, Michael K.H., 2020. "Performance characteristics of variable conductance loop thermosyphon for energy-efficient building thermal control," Applied Energy, Elsevier, vol. 275(C).
    3. Sikai Zou & Chang Yue & Ting Xiao & Xingyi Ma & Yiwei Wang, 2023. "Study on Effects of Operating Parameters on a Water-Cooled Loop Thermosyphon System under Partial Server Utilization," Sustainability, MDPI, vol. 15(17), pages 1-20, August.
    4. Meng, Fanxi & Zhang, Quan & Lin, Yaolin & Zou, Sikai & Fu, Jiyao & Liu, Baochang & Wang, Wei & Ma, Xiaowei & Du, Sheng, 2022. "Field study on the performance of a thermosyphon and mechanical refrigeration hybrid cooling system in a 5G telecommunication base station," Energy, Elsevier, vol. 252(C).
    5. Graamans, Luuk & Tenpierik, Martin & van den Dobbelsteen, Andy & Stanghellini, Cecilia, 2020. "Plant factories: Reducing energy demand at high internal heat loads through façade design," Applied Energy, Elsevier, vol. 262(C).
    6. Zhang, Hainan & Shao, Shuangquan & Tian, Changqing & Zhang, Kunzhu, 2018. "A review on thermosyphon and its integrated system with vapor compression for free cooling of data centers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 789-798.
    7. Xia, Guanghui & Zhuang, Dawei & Ding, Guoliang & Lu, Jingchao, 2020. "A quasi-three-dimensional distributed parameter model of micro-channel separated heat pipe applied for cooling telecommunication cabinets," Applied Energy, Elsevier, vol. 276(C).
    8. Cao, Jingyu & Zheng, Zhanying & Asim, Muhammad & Hu, Mingke & Wang, Qiliang & Su, Yuehong & Pei, Gang & Leung, Michael K.H., 2020. "A review on independent and integrated/coupled two-phase loop thermosyphons," Applied Energy, Elsevier, vol. 280(C).
    9. Hafiz M. Daraghmeh & Mohammed W. Sulaiman & Kai-Shing Yang & Chi-Chuan Wang, 2018. "Investigation of Separated Two-Phase Thermosiphon Loop for Relieving the Air-Conditioning Loading in Datacenter," Energies, MDPI, vol. 12(1), pages 1-18, December.
    10. Shao, Shuangquan & Liu, Haichao & Zhang, Hainan & Tian, Changqing, 2019. "Experimental investigation on a loop thermosyphon with evaporative condenser for free cooling of data centers," Energy, Elsevier, vol. 185(C), pages 829-836.
    11. Yiming Rongyang & Weitao Su & Zujun Mao & Wenlin Huang & Bowen Du & Shaozhi Zhang, 2024. "Experimental Study on the Impact of Lubricant on the Performance of Gravity-Assisted Separated Heat Pipe," Energies, MDPI, vol. 17(15), pages 1-12, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, L.Y. & Liu, Y.Y. & Guo, X. & Meng, X.Z. & Jin, L.W. & Zhang, Q.L. & Hu, W.J., 2017. "Experimental investigation and economic analysis of gravity heat pipe exchanger applied in communication base station," Applied Energy, Elsevier, vol. 194(C), pages 499-507.
    2. Isazadeh, Amin & Ziviani, Davide & Claridge, David E., 2023. "Global trends, performance metrics, and energy reduction measures in datacom facilities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 174(C).
    3. Xia, Guanghui & Zhuang, Dawei & Ding, Guoliang & Lu, Jingchao, 2020. "A quasi-three-dimensional distributed parameter model of micro-channel separated heat pipe applied for cooling telecommunication cabinets," Applied Energy, Elsevier, vol. 276(C).
    4. Cho, Jinkyun & Kim, Yundeok, 2016. "Improving energy efficiency of dedicated cooling system and its contribution towards meeting an energy-optimized data center," Applied Energy, Elsevier, vol. 165(C), pages 967-982.
    5. Chu, Wen-Xiao & Wang, Chi-Chuan, 2019. "A review on airflow management in data centers," Applied Energy, Elsevier, vol. 240(C), pages 84-119.
    6. Heran Jing & Zhenhua Quan & Yaohua Zhao & Lincheng Wang & Ruyang Ren & Ruixue Dong & Yuting Wu, 2022. "Experimental Investigation of Heat Transfer and Flow Characteristics of Split Natural Cooling System for Data Center Based on Micro Heat Pipe Array," Energies, MDPI, vol. 15(12), pages 1-22, June.
    7. Habibi Khalaj, Ali & Abdulla, Khalid & Halgamuge, Saman K., 2018. "Towards the stand-alone operation of data centers with free cooling and optimally sized hybrid renewable power generation and energy storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 93(C), pages 451-472.
    8. Shao, Shuangquan & Liu, Haichao & Zhang, Hainan & Tian, Changqing, 2019. "Experimental investigation on a loop thermosyphon with evaporative condenser for free cooling of data centers," Energy, Elsevier, vol. 185(C), pages 829-836.
    9. Ni, Jiacheng & Bai, Xuelian, 2017. "A review of air conditioning energy performance in data centers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 625-640.
    10. Habibi Khalaj, Ali & Scherer, Thomas & K. Halgamuge, Saman, 2016. "Energy, environmental and economical saving potential of data centers with various economizers across Australia," Applied Energy, Elsevier, vol. 183(C), pages 1528-1549.
    11. Yuan, Weixing & Yang, Bo & Yang, Yufei & Ren, Kexian & Xu, Jian & Liao, Yibing, 2015. "Development and experimental study of the characteristics of a prototype miniature vapor compression refrigerator," Applied Energy, Elsevier, vol. 143(C), pages 47-57.
    12. Habibi Khalaj, Ali & Halgamuge, Saman K., 2017. "A Review on efficient thermal management of air- and liquid-cooled data centers: From chip to the cooling system," Applied Energy, Elsevier, vol. 205(C), pages 1165-1188.
    13. Zhang, Hainan & Shao, Shuangquan & Tian, Changqing & Zhang, Kunzhu, 2018. "A review on thermosyphon and its integrated system with vapor compression for free cooling of data centers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 789-798.
    14. Manal Ayyad Dhif Alshammry & Saqib Muneer, 2023. "The influence of economic development, capital formation, and internet use on environmental degradation in Saudi Arabia," Future Business Journal, Springer, vol. 9(1), pages 1-16, December.
    15. Xiaofei Huang & Junwei Yan & Xuan Zhou & Yixin Wu & Shichen Hu, 2023. "Cooling Technologies for Internet Data Center in China: Principle, Energy Efficiency, and Applications," Energies, MDPI, vol. 16(20), pages 1-31, October.
    16. Qv, Dehu & Ni, Long & Yao, Yang & Hu, Wenju, 2015. "Reliability verification of a solar–air source heat pump system with PCM energy storage in operating strategy transition," Renewable Energy, Elsevier, vol. 84(C), pages 46-55.
    17. Noor Muhammad Abd Rahman & Lim Chin Haw & Ahmad Fazlizan, 2021. "A Literature Review of Naturally Ventilated Public Hospital Wards in Tropical Climate Countries for Thermal Comfort and Energy Saving Improvements," Energies, MDPI, vol. 14(2), pages 1-22, January.
    18. Vesterlund, Mattias & Borisová, Stanislava & Emilsson, Ellinor, 2024. "Data center excess heat for mealworm farming, an applied analysis for sustainable protein production," Applied Energy, Elsevier, vol. 353(PA).
    19. Ying Wang & Xiang Huang & Junjie Chu & Yan Du & Xing Tang & Cong Dai & Gang Ma, 2022. "Analysis of an Evaporative Condensation System Coupled to a Microchannel-Separated Heat Pipe for Data Centers," Energies, MDPI, vol. 15(23), pages 1-18, November.
    20. Sijun Xu & Hua Zhang & Zilong Wang, 2023. "Thermal Management and Energy Consumption in Air, Liquid, and Free Cooling Systems for Data Centers: A Review," Energies, MDPI, vol. 16(3), pages 1-25, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:185:y:2017:i:p2:p:1604-1612. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.