IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v181y2019icp1142-1151.html
   My bibliography  Save this article

Potential and methods for increasing the flexibility and efficiency of the lignite fired power unit, using integrated lignite drying

Author

Listed:
  • Pawlak-Kruczek, Halina
  • Niedźwiecki, Łukasz
  • Ostrycharczyk, Michał
  • Czerep, Michał
  • Plutecki, Zbigniew

Abstract

Present increase in the flexibility of coal power plants is a very important and complicated task. The paper discusses the problem of improving the flexibility and efficiency of the power unit on the example of a brown coal-fired unit including the option of low-temperature pre-drying of lignite. Drying technologies using low-temperature heat sources are analysed. Depending on the coal drying method, an up to 5% increase in power unit efficiency can be achieved. The possible actual increase in the efficiency of a specific power unit will result from the individual features and local conditions of the particular power plant. However, for hybrid systems with thermal energy accumulation system, the increase in efficiency depends on the selection of the energy charging system, type of accumulation system and working temperature range. In the authors’ opinion, the implementation of a drying technology for the needs of co-firing in power units should be based on rather the utilization of the internal heat sources of the given power unit with the possible additional use of “waste” or renewable energy sources. The proposed solutions are evaluated from the technical point of view and the expected increase in power unit efficiency is determined.

Suggested Citation

  • Pawlak-Kruczek, Halina & Niedźwiecki, Łukasz & Ostrycharczyk, Michał & Czerep, Michał & Plutecki, Zbigniew, 2019. "Potential and methods for increasing the flexibility and efficiency of the lignite fired power unit, using integrated lignite drying," Energy, Elsevier, vol. 181(C), pages 1142-1151.
  • Handle: RePEc:eee:energy:v:181:y:2019:i:c:p:1142-1151
    DOI: 10.1016/j.energy.2019.06.026
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544219311491
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2019.06.026?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Richter, Marcel & Oeljeklaus, Gerd & Görner, Klaus, 2019. "Improving the load flexibility of coal-fired power plants by the integration of a thermal energy storage," Applied Energy, Elsevier, vol. 236(C), pages 607-621.
    2. Mousavi G, S.M. & Faraji, Faramarz & Majazi, Abbas & Al-Haddad, Kamal, 2017. "A comprehensive review of Flywheel Energy Storage System technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 477-490.
    3. Xu, Z.Y. & Mao, H.C. & Liu, D.S. & Wang, R.Z., 2018. "Waste heat recovery of power plant with large scale serial absorption heat pumps," Energy, Elsevier, vol. 165(PB), pages 1097-1105.
    4. Gazda, Wiesław & Stanek, Wojciech, 2016. "Energy and environmental assessment of integrated biogas trigeneration and photovoltaic plant as more sustainable industrial system," Applied Energy, Elsevier, vol. 169(C), pages 138-149.
    5. Daniele Testi & Paolo Conti & Eva Schito & Luca Urbanucci & Francesco D’Ettorre, 2019. "Synthesis and Optimal Operation of Smart Microgrids Serving a Cluster of Buildings on a Campus with Centralized and Distributed Hybrid Renewable Energy Units," Energies, MDPI, vol. 12(4), pages 1-17, February.
    6. Ivan Pavić & Zora Luburić & Hrvoje Pandžić & Tomislav Capuder & Ivan Andročec, 2019. "Defining and Evaluating Use Cases for Battery Energy Storage Investments: Case Study in Croatia," Energies, MDPI, vol. 12(3), pages 1-23, January.
    7. Wojcik, Jacek D. & Wang, Jihong, 2018. "Feasibility study of Combined Cycle Gas Turbine (CCGT) power plant integration with Adiabatic Compressed Air Energy Storage (ACAES)," Applied Energy, Elsevier, vol. 221(C), pages 477-489.
    8. Xu, Cheng & Xu, Gang & Zhao, Shifei & Zhou, Luyao & Yang, Yongping & Zhang, Dongke, 2015. "An improved configuration of lignite pre-drying using a supplementary steam cycle in a lignite fired supercritical power plant," Applied Energy, Elsevier, vol. 160(C), pages 882-891.
    9. Stanek, Wojciech & Czarnowska, Lucyna & Gazda, Wiesław & Simla, Tomasz, 2018. "Thermo-ecological cost of electricity from renewable energy sources," Renewable Energy, Elsevier, vol. 115(C), pages 87-96.
    10. Notton, Gilles & Nivet, Marie-Laure & Voyant, Cyril & Paoli, Christophe & Darras, Christophe & Motte, Fabrice & Fouilloy, Alexis, 2018. "Intermittent and stochastic character of renewable energy sources: Consequences, cost of intermittence and benefit of forecasting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 87(C), pages 96-105.
    11. Stanek, Wojciech & Simla, Tomasz & Gazda, Wiesław, 2019. "Exergetic and thermo-ecological assessment of heat pump supported by electricity from renewable sources," Renewable Energy, Elsevier, vol. 131(C), pages 404-412.
    12. Bloess, Andreas, 2019. "Impacts of heat sector transformation on Germany’s power system through increased use of power-to-heat," Applied Energy, Elsevier, vol. 239(C), pages 560-580.
    13. Bünning, Felix & Wetter, Michael & Fuchs, Marcus & Müller, Dirk, 2018. "Bidirectional low temperature district energy systems with agent-based control: Performance comparison and operation optimization," Applied Energy, Elsevier, vol. 209(C), pages 502-515.
    14. Agraniotis, Michalis & Koumanakos, Antonis & Doukelis, Aggelos & Karellas, Sotirios & Kakaras, Emmanuel, 2012. "Investigation of technical and economic aspects of pre-dried lignite utilisation in a modern lignite power plant towards zero CO2 emissions," Energy, Elsevier, vol. 45(1), pages 134-141.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Čespiva, Jakub & Wnukowski, Mateusz & Niedzwiecki, Lukasz & Skřínský, Jan & Vereš, Ján & Ochodek, Tadeáš & Pawlak-Kruczek, Halina & Borovec, Karel, 2020. "Characterization of tars from a novel, pilot scale, biomass gasifier working under low equivalence ratio regime," Renewable Energy, Elsevier, vol. 159(C), pages 775-785.
    2. Tadeusz Mączka & Halina Pawlak-Kruczek & Lukasz Niedzwiecki & Edward Ziaja & Artur Chorążyczewski, 2020. "Plasma Assisted Combustion as a Cost-Effective Way for Balancing of Intermittent Sources: Techno-Economic Assessment for 200 MW el Power Unit," Energies, MDPI, vol. 13(19), pages 1-16, September.
    3. Hao Luo & Lukasz Niedzwiecki & Amit Arora & Krzysztof Mościcki & Halina Pawlak-Kruczek & Krystian Krochmalny & Marcin Baranowski & Mayank Tiwari & Anshul Sharma & Tanuj Sharma & Zhimin Lu, 2020. "Influence of Torrefaction and Pelletizing of Sawdust on the Design Parameters of a Fixed Bed Gasifier," Energies, MDPI, vol. 13(11), pages 1-19, June.
    4. Ioannis Avagianos & Dimitrios Rakopoulos & Sotirios Karellas & Emmanouil Kakaras, 2020. "Review of Process Modeling of Solid-Fuel Thermal Power Plants for Flexible and Off-Design Operation," Energies, MDPI, vol. 13(24), pages 1-41, December.
    5. Han, Yu & Sun, Yingying & Wu, Junjie, 2020. "An efficient solar-aided waste heat recovery system based on steam ejector and WTA pre-drying in solar/lignite hybrid power plants," Energy, Elsevier, vol. 208(C).
    6. Tomasz Hardy & Amit Arora & Halina Pawlak-Kruczek & Wojciech Rafajłowicz & Jerzy Wietrzych & Łukasz Niedźwiecki & Vishwajeet & Krzysztof Mościcki, 2021. "Non-Destructive Diagnostic Methods for Fire-Side Corrosion Risk Assessment of Industrial Scale Boilers, Burning Low Quality Solid Biofuels—A Mini Review," Energies, MDPI, vol. 14(21), pages 1-15, November.
    7. Zbigniew Plutecki & Paweł Sattler & Krystian Ryszczyk & Anna Duczkowska & Stanisław Anweiler, 2020. "Thermokinetics of Brown Coal during a Fluidized Drying Process," Energies, MDPI, vol. 13(3), pages 1-16, February.
    8. Fu, Pengbo & Yu, Hao & Li, Qiqi & Cheng, Tingting & Zhang, Fangzheng & Yang, Tao & Huang, Yuan & Li, Jianping & Fang, Xiangchen & Xiu, Guangli & Wang, Hualin, 2022. "Cyclone rotational drying of lignite based on particle high-speed self-rotation: Lower carrier gas temperature and shorter residence time," Energy, Elsevier, vol. 244(PB).
    9. Paweł Ziółkowski & Paweł Madejski & Milad Amiri & Tomasz Kuś & Kamil Stasiak & Navaneethan Subramanian & Halina Pawlak-Kruczek & Janusz Badur & Łukasz Niedźwiecki & Dariusz Mikielewicz, 2021. "Thermodynamic Analysis of Negative CO 2 Emission Power Plant Using Aspen Plus, Aspen Hysys, and Ebsilon Software," Energies, MDPI, vol. 14(19), pages 1-27, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tadeusz Mączka & Halina Pawlak-Kruczek & Lukasz Niedzwiecki & Edward Ziaja & Artur Chorążyczewski, 2020. "Plasma Assisted Combustion as a Cost-Effective Way for Balancing of Intermittent Sources: Techno-Economic Assessment for 200 MW el Power Unit," Energies, MDPI, vol. 13(19), pages 1-16, September.
    2. Han, Yu & Sun, Yingying & Wu, Junjie, 2023. "A novel solar-driven waste heat recovery system in solar-fuel hybrid power plants," Energy, Elsevier, vol. 285(C).
    3. Zhao, Haitao & Jiang, Peng & Chen, Zhe & Ezeh, Collins I. & Hong, Yuanda & Guo, Yishan & Zheng, Chenghang & Džapo, Hrvoje & Gao, Xiang & Wu, Tao, 2019. "Improvement of fuel sources and energy products flexibility in coal power plants via energy-cyber-physical-systems approach," Applied Energy, Elsevier, vol. 254(C).
    4. Halina Pawlak–Kruczek & Michał Czerep & Lukasz Niedzwiecki & Emmanouil Karampinis & Ioannis Violidakis & Ioannis Avagianos & Panagiotis Grammelis, 2019. "Drying of Lignite of Various Origins in a Pilot Scale Toroidal Fluidized Bed Dryer using Low Quality Heat," Energies, MDPI, vol. 12(7), pages 1-22, March.
    5. Han, Xiaoqu & Liu, Ming & Zhai, Mengxu & Chong, Daotong & Yan, Junjie & Xiao, Feng, 2015. "Investigation on the off-design performances of flue gas pre-dried lignite-fired power system integrated with waste heat recovery at variable external working conditions," Energy, Elsevier, vol. 90(P2), pages 1743-1758.
    6. Glensk, Barbara & Madlener, Reinhard, 2019. "The value of enhanced flexibility of gas-fired power plants: A real options analysis," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    7. Bartosz Matyjewicz & Kacper Świechowski & Jacek A. Koziel & Andrzej Białowiec, 2020. "Proof-of-Concept of High-Pressure Torrefaction for Improvement of Pelletized Biomass Fuel Properties and Process Cost Reduction," Energies, MDPI, vol. 13(18), pages 1-27, September.
    8. Atsonios, K. & Violidakis, I. & Sfetsioris, K. & Rakopoulos, D.C. & Grammelis, P. & Kakaras, E., 2016. "Pre-dried lignite technology implementation in partial load/low demand cases for flexibility enhancement," Energy, Elsevier, vol. 96(C), pages 427-436.
    9. Chen, Yuzhu & Wang, Jiangjiang & Ma, Chaofan & Gao, Yuefen, 2019. "Thermo-ecological cost assessment and optimization for a hybrid combined cooling, heating and power system coupled with compound parabolic concentrated-photovoltaic thermal solar collectors," Energy, Elsevier, vol. 176(C), pages 479-492.
    10. Zhang, Shunqi & Liu, Ming & Ma, Yuegeng & Liu, Jiping & Yan, Junjie, 2021. "Flexibility assessment of a modified double-reheat Rankine cycle integrating a regenerative turbine during recuperative heater shutdown processes," Energy, Elsevier, vol. 233(C).
    11. Urbanowska, Agnieszka & Niedzwiecki, Lukasz & Wnukowski, Mateusz & Aragon-Briceño, Christian & Kabsch-Korbutowicz, Małgorzata & Baranowski, Marcin & Czerep, Michał & Seruga, Przemysław & Pawlak-Krucze, 2023. "Recovery of chemical energy from retentates from cascade membrane filtration of hydrothermal carbonisation effluent," Energy, Elsevier, vol. 284(C).
    12. Dong, Lijun & Kang, Xiaojun & Pan, Mengqi & Zhao, Man & Zhang, Feng & Yao, Hong, 2020. "B-matching-based optimization model for energy allocation in sea surface monitoring," Energy, Elsevier, vol. 192(C).
    13. Hao Luo & Lukasz Niedzwiecki & Amit Arora & Krzysztof Mościcki & Halina Pawlak-Kruczek & Krystian Krochmalny & Marcin Baranowski & Mayank Tiwari & Anshul Sharma & Tanuj Sharma & Zhimin Lu, 2020. "Influence of Torrefaction and Pelletizing of Sawdust on the Design Parameters of a Fixed Bed Gasifier," Energies, MDPI, vol. 13(11), pages 1-19, June.
    14. Yang, Tingting & Liu, Ziyuan & Zeng, Deliang & Zhu, Yansong, 2023. "Simulation and evaluation of flexible enhancement of thermal power unit coupled with flywheel energy storage array," Energy, Elsevier, vol. 281(C).
    15. Gao, Xian & Knueven, Bernard & Siirola, John D. & Miller, David C. & Dowling, Alexander W., 2022. "Multiscale simulation of integrated energy system and electricity market interactions," Applied Energy, Elsevier, vol. 316(C).
    16. Guo, Yurun & Wang, Shugang & Wang, Jihong & Zhang, Tengfei & Ma, Zhenjun & Jiang, Shuang, 2024. "Key district heating technologies for building energy flexibility: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    17. Das, Himadry Shekhar & Tan, Chee Wei & Yatim, A.H.M., 2017. "Fuel cell hybrid electric vehicles: A review on power conditioning units and topologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 268-291.
    18. Nallapaneni Manoj Kumar & Aneesh A. Chand & Maria Malvoni & Kushal A. Prasad & Kabir A. Mamun & F.R. Islam & Shauhrat S. Chopra, 2020. "Distributed Energy Resources and the Application of AI, IoT, and Blockchain in Smart Grids," Energies, MDPI, vol. 13(21), pages 1-42, November.
    19. Guelpa, Elisa & Bischi, Aldo & Verda, Vittorio & Chertkov, Michael & Lund, Henrik, 2019. "Towards future infrastructures for sustainable multi-energy systems: A review," Energy, Elsevier, vol. 184(C), pages 2-21.
    20. Barelli, L. & Bidini, G. & Bonucci, F. & Castellini, L. & Fratini, A. & Gallorini, F. & Zuccari, A., 2019. "Flywheel hybridization to improve battery life in energy storage systems coupled to RES plants," Energy, Elsevier, vol. 173(C), pages 937-950.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:181:y:2019:i:c:p:1142-1151. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.