IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v316y2022ics0306261922004238.html
   My bibliography  Save this article

Multiscale simulation of integrated energy system and electricity market interactions

Author

Listed:
  • Gao, Xian
  • Knueven, Bernard
  • Siirola, John D.
  • Miller, David C.
  • Dowling, Alexander W.

Abstract

Accelerating the deep decarbonization of the world’s electric grids requires the coordination of complex energy systems and infrastructures across timescales from seconds to decades. In this paper, we present a new multiscale simulation framework that integrates process- and grid-centric modeling paradigms to better design, operate, and control integrated energy systems (IESs), which combine multiple technologies, in wholesale energy markets. Traditionally, IESs are analyzed with a process-centric paradigm such as levelized cost of electricity (LCOE) or annualized net revenue, ignoring important interactions with electricity markets. This framework explicitly models the complex interactions between an IES’s bidding, scheduling, and control decisions and the energy market’s clearing and settlement processes, while incorporating operational uncertainties. Through two case studies, we show the importance of understanding and quantifying complex resource-grid interactions. In case study 1, we demonstrate that optimized bidding from one resource shifts the profit distribution for all energy systems in the market. This result suggests new and more flexible IES technologies can disrupt the economics of all market participants, possibly leading to accelerated retirements of less flexible resources. Interestingly, the optimized bidding has little impact on grid-level aggregate statistics, such as total generation costs and renewable penetration rate. While aggregate modeling strategies may remain valid under some IES adoption scenarios for analysis focused on regional outcomes, direct comparisons of IES technologies at specific locations without considering these interactions may lead to misleading or incorrect conclusions. In case study 2, we consider the design and flexible operation of IESs that hybridize conventional generators with energy storage. Through a sensitivity analysis, we find that as the size of the storage system increases, the total number of start-ups for coal- and natural gas-based IESs reduced by 25% and 33.6%, and the total thermal generator ramping (i.e., mileage) reduced by 86.5% and 62.5%, respectively. This shows the primary benefit of storage may not be reduced operational costs (which do not change significantly) but fewer start-ups and less ramping, which may greatly simplify the design, operation, and control of carbon capture systems. The new modeling and optimization capabilities from this work enable the coupling of rigorous, dynamic process models with grid-level production cost models to quantitatively identify the nuanced interdependencies across these vast timescales that must be addressed to realize clean, safe, and secure energy production. Moreover, the proposed general multiscale simulation framework is applicable to all IES technologies and can be easily extended to consider other energy carriers (e.g., hydrogen, ammonia) and energy infrastructures (e.g., natural gas pipelines).

Suggested Citation

  • Gao, Xian & Knueven, Bernard & Siirola, John D. & Miller, David C. & Dowling, Alexander W., 2022. "Multiscale simulation of integrated energy system and electricity market interactions," Applied Energy, Elsevier, vol. 316(C).
  • Handle: RePEc:eee:appene:v:316:y:2022:i:c:s0306261922004238
    DOI: 10.1016/j.apenergy.2022.119017
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261922004238
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2022.119017?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Rachunok, Benjamin & Staid, Andrea & Watson, Jean-Paul & Woodruff, David L., 2020. "Assessment of wind power scenario creation methods for stochastic power systems operations," Applied Energy, Elsevier, vol. 268(C).
    2. Koltsaklis, Nikolaos E. & Dagoumas, Athanasios S., 2018. "State-of-the-art generation expansion planning: A review," Applied Energy, Elsevier, vol. 230(C), pages 563-589.
    3. Niina Helistö & Juha Kiviluoma & Jussi Ikäheimo & Topi Rasku & Erkka Rinne & Ciara O’Dwyer & Ran Li & Damian Flynn, 2019. "Backbone—An Adaptable Energy Systems Modelling Framework," Energies, MDPI, vol. 12(17), pages 1-34, September.
    4. Sadeghi, Hadi & Rashidinejad, Masoud & Abdollahi, Amir, 2017. "A comprehensive sequential review study through the generation expansion planning," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 1369-1394.
    5. Richter, Marcel & Oeljeklaus, Gerd & Görner, Klaus, 2019. "Improving the load flexibility of coal-fired power plants by the integration of a thermal energy storage," Applied Energy, Elsevier, vol. 236(C), pages 607-621.
    6. Walawalkar, Rahul & Apt, Jay & Mancini, Rick, 2007. "Economics of electric energy storage for energy arbitrage and regulation in New York," Energy Policy, Elsevier, vol. 35(4), pages 2558-2568, April.
    7. Wang, Chengshan & Lv, Chaoxian & Li, Peng & Song, Guanyu & Li, Shuquan & Xu, Xiandong & Wu, Jianzhong, 2018. "Modeling and optimal operation of community integrated energy systems: A case study from China," Applied Energy, Elsevier, vol. 230(C), pages 1242-1254.
    8. Scott, Ian J. & Carvalho, Pedro M.S. & Botterud, Audun & Silva, Carlos A., 2019. "Clustering representative days for power systems generation expansion planning: Capturing the effects of variable renewables and energy storage," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    9. Moslehi, Salim & Reddy, T. Agami, 2019. "A new quantitative life cycle sustainability assessment framework: Application to integrated energy systems," Applied Energy, Elsevier, vol. 239(C), pages 482-493.
    10. Li, Guoqing & Zhang, Rufeng & Jiang, Tao & Chen, Houhe & Bai, Linquan & Cui, Hantao & Li, Xiaojing, 2017. "Optimal dispatch strategy for integrated energy systems with CCHP and wind power," Applied Energy, Elsevier, vol. 192(C), pages 408-419.
    11. Fares, Robert L. & Meyers, Jeremy P. & Webber, Michael E., 2014. "A dynamic model-based estimate of the value of a vanadium redox flow battery for frequency regulation in Texas," Applied Energy, Elsevier, vol. 113(C), pages 189-198.
    12. Angerer, Michael & Kahlert, Steffen & Spliethoff, Hartmut, 2017. "Transient simulation and fatigue evaluation of fast gas turbine startups and shutdowns in a combined cycle plant with an innovative thermal buffer storage," Energy, Elsevier, vol. 130(C), pages 246-257.
    13. Jacek D. Wojcik & Jihong Wang, 2017. "Technical Feasibility Study of Thermal Energy Storage Integration into the Conventional Power Plant Cycle," Energies, MDPI, vol. 10(2), pages 1-19, February.
    14. Dowling, Alexander W. & Kumar, Ranjeet & Zavala, Victor M., 2017. "A multi-scale optimization framework for electricity market participation," Applied Energy, Elsevier, vol. 190(C), pages 147-164.
    15. Cramton, Peter & Stoft, Steven, 2005. "A Capacity Market that Makes Sense," The Electricity Journal, Elsevier, vol. 18(7), pages 43-54.
    16. Gacitua, L. & Gallegos, P. & Henriquez-Auba, R. & Lorca, Á. & Negrete-Pincetic, M. & Olivares, D. & Valenzuela, A. & Wenzel, G., 2018. "A comprehensive review on expansion planning: Models and tools for energy policy analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 98(C), pages 346-360.
    17. Wojcik, Jacek D. & Wang, Jihong, 2018. "Feasibility study of Combined Cycle Gas Turbine (CCGT) power plant integration with Adiabatic Compressed Air Energy Storage (ACAES)," Applied Energy, Elsevier, vol. 221(C), pages 477-489.
    18. Yang, Xiaohui & Chen, Zaixing & Huang, Xin & Li, Ruixin & Xu, Shaoping & Yang, Chunsheng, 2021. "Robust capacity optimization methods for integrated energy systems considering demand response and thermal comfort," Energy, Elsevier, vol. 221(C).
    19. Garbrecht, Oliver & Bieber, Malte & Kneer, Reinhold, 2017. "Increasing fossil power plant flexibility by integrating molten-salt thermal storage," Energy, Elsevier, vol. 118(C), pages 876-883.
    20. Kuboth, Sebastian & Heberle, Florian & König-Haagen, Andreas & Brüggemann, Dieter, 2019. "Economic model predictive control of combined thermal and electric residential building energy systems," Applied Energy, Elsevier, vol. 240(C), pages 372-385.
    21. Lara, Cristiana L. & Mallapragada, Dharik S. & Papageorgiou, Dimitri J. & Venkatesh, Aranya & Grossmann, Ignacio E., 2018. "Deterministic electric power infrastructure planning: Mixed-integer programming model and nested decomposition algorithm," European Journal of Operational Research, Elsevier, vol. 271(3), pages 1037-1054.
    22. Martinek, Janna & Jorgenson, Jennie & Mehos, Mark & Denholm, Paul, 2018. "A comparison of price-taker and production cost models for determining system value, revenue, and scheduling of concentrating solar power plants," Applied Energy, Elsevier, vol. 231(C), pages 854-865.
    23. Fuentes-Cortés, Luis Fabián & Dowling, Alexander W. & Rubio-Maya, Carlos & Zavala, Víctor M. & Ponce-Ortega, José María, 2016. "Integrated design and control of multigeneration systems for building complexes," Energy, Elsevier, vol. 116(P2), pages 1403-1416.
    24. Davatgaran, Vahid & Saniei, Mohsen & Mortazavi, Seyed Saeidollah, 2018. "Optimal bidding strategy for an energy hub in energy market," Energy, Elsevier, vol. 148(C), pages 482-493.
    25. Iria, José & Soares, Filipe & Matos, Manuel, 2018. "Optimal supply and demand bidding strategy for an aggregator of small prosumers," Applied Energy, Elsevier, vol. 213(C), pages 658-669.
    26. Wang, Jianxiao & Zhong, Haiwang & Tang, Wenyuan & Rajagopal, Ram & Xia, Qing & Kang, Chongqing & Wang, Yi, 2017. "Optimal bidding strategy for microgrids in joint energy and ancillary service markets considering flexible ramping products," Applied Energy, Elsevier, vol. 205(C), pages 294-303.
    27. Muhanji, Steffi O. & Farid, Amro M., 2020. "An enterprise control methodology for the techno-economic assessment of the energy water nexus," Applied Energy, Elsevier, vol. 260(C).
    28. Bernard Knueven & James Ostrowski & Jean-Paul Watson, 2020. "On Mixed-Integer Programming Formulations for the Unit Commitment Problem," INFORMS Journal on Computing, INFORMS, vol. 32(4), pages 857-876, October.
    29. Nelson, James R. & Johnson, Nathan G., 2020. "Model predictive control of microgrids for real-time ancillary service market participation," Applied Energy, Elsevier, vol. 269(C).
    30. Zheng, J.H. & Chen, J.J. & Wu, Q.H. & Jing, Z.X., 2015. "Multi-objective optimization and decision making for power dispatch of a large-scale integrated energy system with distributed DHCs embedded," Applied Energy, Elsevier, vol. 154(C), pages 369-379.
    31. Dowling, Alexander W. & Zheng, Tian & Zavala, Victor M., 2017. "Economic assessment of concentrated solar power technologies: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 1019-1032.
    32. Zheng, J.H. & Wu, Q.H. & Jing, Z.X., 2017. "Coordinated scheduling strategy to optimize conflicting benefits for daily operation of integrated electricity and gas networks," Applied Energy, Elsevier, vol. 192(C), pages 370-381.
    33. Mitra, Sumit & Sun, Lige & Grossmann, Ignacio E., 2013. "Optimal scheduling of industrial combined heat and power plants under time-sensitive electricity prices," Energy, Elsevier, vol. 54(C), pages 194-211.
    34. Dominguez, R. & Baringo, L. & Conejo, A.J., 2012. "Optimal offering strategy for a concentrating solar power plant," Applied Energy, Elsevier, vol. 98(C), pages 316-325.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wu, Long & Yin, Xunyuan & Pan, Lei & Liu, Jinfeng, 2023. "Distributed economic predictive control of integrated energy systems for enhanced synergy and grid response: A decomposition and cooperation strategy," Applied Energy, Elsevier, vol. 349(C).
    2. Wang, L.L. & Xian, R.C. & Jiao, P.H. & Liu, X.H. & Xing, Y.W. & Wang, W., 2024. "Cooperative operation of industrial/commercial/residential integrated energy system with hydrogen energy based on Nash bargaining theory," Energy, Elsevier, vol. 288(C).
    3. Guan, Aobo & Zhou, Suyang & Gu, Wei & Chen, Jinyi & Lv, Hongkun & Fang, Yunhui & Xv, Jie, 2024. "Enhancing stability of electric-steam integrated energy systems by integrating steam accumulator," Applied Energy, Elsevier, vol. 364(C).
    4. Wu, Long & Yin, Xunyuan & Pan, Lei & Liu, Jinfeng, 2022. "Economic model predictive control of integrated energy systems: A multi-time-scale framework," Applied Energy, Elsevier, vol. 328(C).
    5. Jalving, Jordan & Ghouse, Jaffer & Cortes, Nicole & Gao, Xian & Knueven, Bernard & Agi, Damian & Martin, Shawn & Chen, Xinhe & Guittet, Darice & Tumbalam-Gooty, Radhakrishna & Bianchi, Ludovico & Beat, 2023. "Beyond price taker: Conceptual design and optimization of integrated energy systems using machine learning market surrogates," Applied Energy, Elsevier, vol. 351(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jalving, Jordan & Ghouse, Jaffer & Cortes, Nicole & Gao, Xian & Knueven, Bernard & Agi, Damian & Martin, Shawn & Chen, Xinhe & Guittet, Darice & Tumbalam-Gooty, Radhakrishna & Bianchi, Ludovico & Beat, 2023. "Beyond price taker: Conceptual design and optimization of integrated energy systems using machine learning market surrogates," Applied Energy, Elsevier, vol. 351(C).
    2. Dowling, Alexander W. & Kumar, Ranjeet & Zavala, Victor M., 2017. "A multi-scale optimization framework for electricity market participation," Applied Energy, Elsevier, vol. 190(C), pages 147-164.
    3. Li, Can & Conejo, Antonio J. & Liu, Peng & Omell, Benjamin P. & Siirola, John D. & Grossmann, Ignacio E., 2022. "Mixed-integer linear programming models and algorithms for generation and transmission expansion planning of power systems," European Journal of Operational Research, Elsevier, vol. 297(3), pages 1071-1082.
    4. Elmore, Clay T. & Dowling, Alexander W., 2021. "Learning spatiotemporal dynamics in wholesale energy markets with dynamic mode decomposition," Energy, Elsevier, vol. 232(C).
    5. Teichgraeber, Holger & Brandt, Adam R., 2022. "Time-series aggregation for the optimization of energy systems: Goals, challenges, approaches, and opportunities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
    6. Yang, Tingting & Liu, Ziyuan & Zeng, Deliang & Zhu, Yansong, 2023. "Simulation and evaluation of flexible enhancement of thermal power unit coupled with flywheel energy storage array," Energy, Elsevier, vol. 281(C).
    7. Scott, Ian J. & Botterud, Audun & Carvalho, Pedro M.S. & Silva, Carlos A. Santos, 2020. "Renewable energy support policy evaluation: The role of long-term uncertainty in market modelling," Applied Energy, Elsevier, vol. 278(C).
    8. Wang, L.X. & Zheng, J.H. & Li, M.S. & Lin, X. & Jing, Z.X. & Wu, P.Z. & Wu, Q.H. & Zhou, X.X., 2019. "Multi-time scale dynamic analysis of integrated energy systems: An individual-based model," Applied Energy, Elsevier, vol. 237(C), pages 848-861.
    9. Dranka, Géremi Gilson & Ferreira, Paula & Vaz, A. Ismael F., 2021. "A review of co-optimization approaches for operational and planning problems in the energy sector," Applied Energy, Elsevier, vol. 304(C).
    10. Scott, Ian J. & Carvalho, Pedro M.S. & Botterud, Audun & Silva, Carlos A., 2021. "Long-term uncertainties in generation expansion planning: Implications for electricity market modelling and policy," Energy, Elsevier, vol. 227(C).
    11. Jun Dong & Dongran Liu & Xihao Dou & Bo Li & Shiyao Lv & Yuzheng Jiang & Tongtao Ma, 2021. "Key Issues and Technical Applications in the Study of Power Markets as the System Adapts to the New Power System in China," Sustainability, MDPI, vol. 13(23), pages 1-29, December.
    12. Kahvecioğlu, Gökçe & Morton, David P. & Wagner, Michael J., 2022. "Dispatch optimization of a concentrating solar power system under uncertain solar irradiance and energy prices," Applied Energy, Elsevier, vol. 326(C).
    13. Zhao, Yongliang & Liu, Ming & Wang, Chaoyang & Wang, Zhu & Chong, Daotong & Yan, Junjie, 2019. "Exergy analysis of the regulating measures of operational flexibility in supercritical coal-fired power plants during transient processes," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    14. Aghamohamadi, Mehrdad & Mahmoudi, Amin, 2019. "From bidding strategy in smart grid toward integrated bidding strategy in smart multi-energy systems, an adaptive robust solution approach," Energy, Elsevier, vol. 183(C), pages 75-91.
    15. Yang, Peiwen & Dong, Jun & Lin, Jin & Liu, Yao & Fang, Debin, 2021. "Analysis of offering behavior of generation-side integrated energy aggregator in electricity market:A Bayesian evolutionary approach," Energy, Elsevier, vol. 228(C).
    16. Çam, Eren, 2020. "Optimal Dispatch of a Coal-Fired Power Plant with Integrated Thermal Energy Storage," EWI Working Papers 2020-5, Energiewirtschaftliches Institut an der Universitaet zu Koeln (EWI), revised 10 Aug 2021.
    17. Yeganefar, Ali & Amin-Naseri, Mohammad Reza & Sheikh-El-Eslami, Mohammad Kazem, 2020. "Improvement of representative days selection in power system planning by incorporating the extreme days of the net load to take account of the variability and intermittency of renewable resources," Applied Energy, Elsevier, vol. 272(C).
    18. Vrionis, Constantinos & Tsalavoutis, Vasilios & Tolis, Athanasios, 2020. "A Generation Expansion Planning model for integrating high shares of renewable energy: A Meta-Model Assisted Evolutionary Algorithm approach," Applied Energy, Elsevier, vol. 259(C).
    19. Brändle, Gregor & Schönfisch, Max & Schulte, Simon, 2020. "Estimating Long-Term Global Supply Costs for Low-Carbon Hydrogen," EWI Working Papers 2020-4, Energiewirtschaftliches Institut an der Universitaet zu Koeln (EWI), revised 10 Aug 2021.
    20. Qingtao Li & Jianxue Wang & Yao Zhang & Yue Fan & Guojun Bao & Xuebin Wang, 2020. "Multi-Period Generation Expansion Planning for Sustainable Power Systems to Maximize the Utilization of Renewable Energy Sources," Sustainability, MDPI, vol. 12(3), pages 1-18, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:316:y:2022:i:c:s0306261922004238. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.