IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i19p6304-d649035.html
   My bibliography  Save this article

Thermodynamic Analysis of Negative CO 2 Emission Power Plant Using Aspen Plus, Aspen Hysys, and Ebsilon Software

Author

Listed:
  • Paweł Ziółkowski

    (Faculty of Mechanical Engineering and Ship Technology, Institute of Energy, Gdańsk University of Technology, 80-233 Gdańsk, Poland)

  • Paweł Madejski

    (Department of Power Systems and Environmental Protection Facilities, Faculty of Mechanical Engineering, AGH University of Science and Technology, 30-059 Kraków, Poland)

  • Milad Amiri

    (Faculty of Mechanical Engineering and Ship Technology, Institute of Energy, Gdańsk University of Technology, 80-233 Gdańsk, Poland)

  • Tomasz Kuś

    (Department of Power Systems and Environmental Protection Facilities, Faculty of Mechanical Engineering, AGH University of Science and Technology, 30-059 Kraków, Poland)

  • Kamil Stasiak

    (Faculty of Mechanical Engineering and Ship Technology, Institute of Energy, Gdańsk University of Technology, 80-233 Gdańsk, Poland)

  • Navaneethan Subramanian

    (Department of Power Systems and Environmental Protection Facilities, Faculty of Mechanical Engineering, AGH University of Science and Technology, 30-059 Kraków, Poland)

  • Halina Pawlak-Kruczek

    (Department of Energy Conversion Engineering, Faculty of Mechanical and Power Engineering, Wroclaw University of Science and Technology, 50-370 Wrocław, Poland)

  • Janusz Badur

    (Energy Conversion Department, Institute of Fluid Flow Machinery, Polish Academy of Sciences, 80-231 Gdańsk, Poland)

  • Łukasz Niedźwiecki

    (Department of Energy Conversion Engineering, Faculty of Mechanical and Power Engineering, Wroclaw University of Science and Technology, 50-370 Wrocław, Poland)

  • Dariusz Mikielewicz

    (Faculty of Mechanical Engineering and Ship Technology, Institute of Energy, Gdańsk University of Technology, 80-233 Gdańsk, Poland)

Abstract

The article presents results of thermodynamic analysis using a zero-dimensional mathematical models of a negative CO 2 emission power plant. The developed cycle of a negative CO 2 emission power plant allows the production of electricity using gasified sewage sludge as a main fuel. The negative emission can be achieved by the use this type of fuel which is already a “zero-emissive” energy source. Together with carbon capture installation, there is a possibility to decrease CO 2 emission below the “zero” level. Developed models of a novel gas cycle which use selected codes allow the prediction of basic parameters of thermodynamic cycles such as output power, efficiency, combustion composition, exhaust temperature, etc. The paper presents results of thermodynamic analysis of two novel cycles, called PDF0 and PFD1, by using different thermodynamic codes. A comparison of results obtained by three different codes offered the chance to verify results because the experimental data are currently not available. The comparison of predictions between three different software in the literature is something new, according to studies made by authors. For gross efficiency (54.74%, 55.18%, and 52.00%), there is a similar relationship for turbine power output (155.9 kW, 157.19 kW, and 148.16 kW). Additionally, the chemical energy rate of the fuel is taken into account, which ultimately results in higher efficiencies for flue gases with increased steam production. A similar trend is assessed for increased CO 2 in the flue gas. The developed precise models are particularly important for a carbon capture and storage (CCS) energy system, where relatively new devices mutually cooperate and their thermodynamic parameters affect those devices. Proposed software employs extended a gas–steam turbine cycle to determine the effect of cycle into environment. First of all, it should be stated that there is a slight influence of the software used on the results obtained, but the basic tendencies are the same, which makes it possible to analyze various types of thermodynamic cycles. Secondly, the possibility of a negative CO 2 emission power plant and the positive environmental impact of the proposed solution has been demonstrated, which is also a novelty in the area of thermodynamic cycles.

Suggested Citation

  • Paweł Ziółkowski & Paweł Madejski & Milad Amiri & Tomasz Kuś & Kamil Stasiak & Navaneethan Subramanian & Halina Pawlak-Kruczek & Janusz Badur & Łukasz Niedźwiecki & Dariusz Mikielewicz, 2021. "Thermodynamic Analysis of Negative CO 2 Emission Power Plant Using Aspen Plus, Aspen Hysys, and Ebsilon Software," Energies, MDPI, vol. 14(19), pages 1-27, October.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:19:p:6304-:d:649035
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/19/6304/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/19/6304/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Mitavachan Hiremath & Peter Viebahn & Sascha Samadi, 2021. "An Integrated Comparative Assessment of Coal-Based Carbon Capture and Storage (CCS) Vis-à-Vis Renewable Energies in India’s Low Carbon Electricity Transition Scenarios," Energies, MDPI, vol. 14(2), pages 1-28, January.
    2. José Luis Míguez & Jacobo Porteiro & Raquel Pérez-Orozco & Miguel Ángel Gómez, 2018. "Technology Evolution in Membrane-Based CCS," Energies, MDPI, vol. 11(11), pages 1-18, November.
    3. Tadeusz Mączka & Halina Pawlak-Kruczek & Lukasz Niedzwiecki & Edward Ziaja & Artur Chorążyczewski, 2020. "Plasma Assisted Combustion as a Cost-Effective Way for Balancing of Intermittent Sources: Techno-Economic Assessment for 200 MW el Power Unit," Energies, MDPI, vol. 13(19), pages 1-16, September.
    4. Ziółkowski, Paweł & Badur, Janusz & Ziółkowski, Piotr Józef, 2019. "An energetic analysis of a gas turbine with regenerative heating using turbine extraction at intermediate pressure - Brayton cycle advanced according to Szewalski's idea," Energy, Elsevier, vol. 185(C), pages 763-786.
    5. Gładysz, Paweł & Stanek, Wojciech & Czarnowska, Lucyna & Węcel, Gabriel & Langørgen, Øyvind, 2017. "Thermodynamic assessment of an integrated MILD oxyfuel combustion power plant," Energy, Elsevier, vol. 137(C), pages 761-774.
    6. Mendiara, T. & García-Labiano, F. & Abad, A. & Gayán, P. & de Diego, L.F. & Izquierdo, M.T. & Adánez, J., 2018. "Negative CO2 emissions through the use of biofuels in chemical looping technology: A review," Applied Energy, Elsevier, vol. 232(C), pages 657-684.
    7. Katherine Romanak & Mathias Fridahl & Tim Dixon, 2021. "Attitudes on Carbon Capture and Storage (CCS) as a Mitigation Technology within the UNFCCC," Energies, MDPI, vol. 14(3), pages 1-16, January.
    8. Jussi Saari & Petteri Peltola & Tero Tynjälä & Timo Hyppänen & Juha Kaikko & Esa Vakkilainen, 2020. "High-Efficiency Bioenergy Carbon Capture Integrating Chemical Looping Combustion with Oxygen Uncoupling and a Large Cogeneration Plant," Energies, MDPI, vol. 13(12), pages 1-21, June.
    9. Sara Restrepo-Valencia & Arnaldo Walter, 2019. "Techno-Economic Assessment of Bio-Energy with Carbon Capture and Storage Systems in a Typical Sugarcane Mill in Brazil," Energies, MDPI, vol. 12(6), pages 1-13, March.
    10. Pilar Lisbona & Sara Pascual & Virginia Pérez, 2021. "Evaluation of Synergies of a Biomass Power Plant and a Biogas Station with a Carbon Capture System," Energies, MDPI, vol. 14(4), pages 1-23, February.
    11. Najmus S. Sifat & Yousef Haseli, 2019. "A Critical Review of CO 2 Capture Technologies and Prospects for Clean Power Generation," Energies, MDPI, vol. 12(21), pages 1-33, October.
    12. Werle, Sebastian & Wilk, Ryszard K., 2010. "A review of methods for the thermal utilization of sewage sludge: The Polish perspective," Renewable Energy, Elsevier, vol. 35(9), pages 1914-1919.
    13. Małgorzata Sieradzka & Ningbo Gao & Cui Quan & Agata Mlonka-Mędrala & Aneta Magdziarz, 2020. "Biomass Thermochemical Conversion via Pyrolysis with Integrated CO 2 Capture," Energies, MDPI, vol. 13(5), pages 1-18, February.
    14. Pawlak-Kruczek, Halina & Niedźwiecki, Łukasz & Ostrycharczyk, Michał & Czerep, Michał & Plutecki, Zbigniew, 2019. "Potential and methods for increasing the flexibility and efficiency of the lignite fired power unit, using integrated lignite drying," Energy, Elsevier, vol. 181(C), pages 1142-1151.
    15. Soares, João & Oliveira, Armando C. & Valenzuela, Loreto, 2021. "A dynamic model for once-through direct steam generation in linear focus solar collectors," Renewable Energy, Elsevier, vol. 163(C), pages 246-261.
    16. Meng Yue & Guoqian Ma & Yuetao Shi, 2020. "Analysis of Gas Recirculation Influencing Factors of a Double Reheat 1000 MW Unit with the Reheat Steam Temperature under Control," Energies, MDPI, vol. 13(16), pages 1-22, August.
    17. Staffan Qvist & Paweł Gładysz & Łukasz Bartela & Anna Sowiżdżał, 2020. "Retrofit Decarbonization of Coal Power Plants—A Case Study for Poland," Energies, MDPI, vol. 14(1), pages 1-37, December.
    18. Madejski, Paweł & Żymełka, Piotr, 2020. "Calculation methods of steam boiler operation factors under varying operating conditions with the use of computational thermodynamic modeling," Energy, Elsevier, vol. 197(C).
    19. Mikielewicz, Dariusz & Wajs, Jan & Ziółkowski, Paweł & Mikielewicz, Jarosław, 2016. "Utilisation of waste heat from the power plant by use of the ORC aided with bleed steam and extra source of heat," Energy, Elsevier, vol. 97(C), pages 11-19.
    20. Bartela, Łukasz & Skorek-Osikowska, Anna & Kotowicz, Janusz, 2014. "Economic analysis of a supercritical coal-fired CHP plant integrated with an absorption carbon capture installation," Energy, Elsevier, vol. 64(C), pages 513-523.
    21. Benato, A. & Bracco, S. & Stoppato, A. & Mirandola, A., 2016. "LTE: A procedure to predict power plants dynamic behaviour and components lifetime reduction during transient operation," Applied Energy, Elsevier, vol. 162(C), pages 880-891.
    22. Detz, Remko J. & van der Zwaan, Bob, 2019. "Transitioning towards negative CO2 emissions," Energy Policy, Elsevier, vol. 133(C).
    23. Szablowski, Lukasz & Krawczyk, Piotr & Badyda, Krzysztof & Karellas, Sotirios & Kakaras, Emmanuel & Bujalski, Wojciech, 2017. "Energy and exergy analysis of adiabatic compressed air energy storage system," Energy, Elsevier, vol. 138(C), pages 12-18.
    24. Kotowicz, Janusz & Job, Marcin & Brzęczek, Mateusz, 2015. "The characteristics of ultramodern combined cycle power plants," Energy, Elsevier, vol. 92(P2), pages 197-211.
    25. Paweł Gładysz & Anna Sowiżdżał & Maciej Miecznik & Maciej Hacaga & Leszek Pająk, 2020. "Techno-Economic Assessment of a Combined Heat and Power Plant Integrated with Carbon Dioxide Removal Technology: A Case Study for Central Poland," Energies, MDPI, vol. 13(11), pages 1-34, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Paweł Ziółkowski & Marta Drosińska-Komor & Jerzy Głuch & Łukasz Breńkacz, 2023. "Review of Methods for Diagnosing the Degradation Process in Power Units Cooperating with Renewable Energy Sources Using Artificial Intelligence," Energies, MDPI, vol. 16(17), pages 1-28, August.
    2. Paweł Madejski & Piotr Michalak & Michał Karch & Tomasz Kuś & Krzysztof Banasiak, 2022. "Monitoring of Thermal and Flow Processes in the Two-Phase Spray-Ejector Condenser for Thermal Power Plant Applications," Energies, MDPI, vol. 15(19), pages 1-22, September.
    3. Madejski, Paweł & Banasiak, Krzysztof & Ziółkowski, Paweł & Mikielewicz, Dariusz & Mikielewicz, Jarosław & Kuś, Tomasz & Karch, Michał & Michalak, Piotr & Amiri, Milad & Dąbrowski, Paweł & Stasiak, Ka, 2023. "Development of a spray-ejector condenser for the use in a negative CO2 emission gas power plant," Energy, Elsevier, vol. 283(C).
    4. Yong, Qingqing & Jin, Kaiyuan & Li, Xiaobo & Yang, Ronggui, 2023. "Thermo-economic analysis for a novel grid-scale pumped thermal electricity storage system coupled with a coal-fired power plant," Energy, Elsevier, vol. 280(C).
    5. Liang, Wenxing & Yu, Zeting & Liu, Wenjing & Ji, Shaobo, 2023. "Investigation of a novel near-zero emission poly-generation system based on biomass gasification and SOFC: A thermodynamic and exergoeconomic evaluation," Energy, Elsevier, vol. 282(C).
    6. Vishwajeet & Halina Pawlak-Kruczek & Marcin Baranowski & Michał Czerep & Artur Chorążyczewski & Krystian Krochmalny & Michał Ostrycharczyk & Paweł Ziółkowski & Paweł Madejski & Tadeusz Mączka & Amit A, 2022. "Entrained Flow Plasma Gasification of Sewage Sludge–Proof-of-Concept and Fate of Inorganics," Energies, MDPI, vol. 15(5), pages 1-14, March.
    7. Despina Vamvuka & George Tsagris & Christia Loulashi, 2023. "Co-Gasification Performance of Low-Quality Lignite with Woody Wastes Using Greenhouse Gas CO 2 —A TG–MS Study," Sustainability, MDPI, vol. 15(12), pages 1-12, June.
    8. Ertesvåg, Ivar S. & Madejski, Paweł & Ziółkowski, Paweł & Mikielewicz, Dariusz, 2023. "Exergy analysis of a negative CO2 emission gas power plant based on water oxy-combustion of syngas from sewage sludge gasification and CCS," Energy, Elsevier, vol. 278(C).
    9. Ziółkowski, Paweł & Badur, Janusz & Pawlak- Kruczek, Halina & Stasiak, Kamil & Amiri, Milad & Niedzwiecki, Lukasz & Krochmalny, Krystian & Mularski, Jakub & Madejski, Paweł & Mikielewicz, Dariusz, 2022. "Mathematical modelling of gasification process of sewage sludge in reactor of negative CO2 emission power plant," Energy, Elsevier, vol. 244(PA).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ziółkowski, Paweł & Badur, Janusz & Pawlak- Kruczek, Halina & Stasiak, Kamil & Amiri, Milad & Niedzwiecki, Lukasz & Krochmalny, Krystian & Mularski, Jakub & Madejski, Paweł & Mikielewicz, Dariusz, 2022. "Mathematical modelling of gasification process of sewage sludge in reactor of negative CO2 emission power plant," Energy, Elsevier, vol. 244(PA).
    2. Ziółkowski, Paweł & Badur, Janusz & Ziółkowski, Piotr Józef, 2019. "An energetic analysis of a gas turbine with regenerative heating using turbine extraction at intermediate pressure - Brayton cycle advanced according to Szewalski's idea," Energy, Elsevier, vol. 185(C), pages 763-786.
    3. Kruk-Gotzman, Sylwia & Ziółkowski, Paweł & Iliev, Iliya & Negreanu, Gabriel-Paul & Badur, Janusz, 2023. "Techno-economic evaluation of combined cycle gas turbine and a diabatic compressed air energy storage integration concept," Energy, Elsevier, vol. 266(C).
    4. Badur, Janusz & Lemański, Marcin & Kowalczyk, Tomasz & Ziółkowski, Paweł & Kornet, Sebastian, 2018. "Zero-dimensional robust model of an SOFC with internal reforming for hybrid energy cycles," Energy, Elsevier, vol. 158(C), pages 128-138.
    5. Jussi Saari & Petteri Peltola & Tero Tynjälä & Timo Hyppänen & Juha Kaikko & Esa Vakkilainen, 2020. "High-Efficiency Bioenergy Carbon Capture Integrating Chemical Looping Combustion with Oxygen Uncoupling and a Large Cogeneration Plant," Energies, MDPI, vol. 13(12), pages 1-21, June.
    6. Paweł Ziółkowski & Marta Drosińska-Komor & Jerzy Głuch & Łukasz Breńkacz, 2023. "Review of Methods for Diagnosing the Degradation Process in Power Units Cooperating with Renewable Energy Sources Using Artificial Intelligence," Energies, MDPI, vol. 16(17), pages 1-28, August.
    7. Tomasz Czakiert & Jaroslaw Krzywanski & Anna Zylka & Wojciech Nowak, 2022. "Chemical Looping Combustion: A Brief Overview," Energies, MDPI, vol. 15(4), pages 1-19, February.
    8. Hyrzyński, Rafał & Ziółkowski, Paweł & Gotzman, Sylwia & Kraszewski, Bartosz & Ochrymiuk, Tomasz & Badur, Janusz, 2021. "Comprehensive thermodynamic analysis of the CAES system coupled with the underground thermal energy storage taking into account global, central and local level of energy conversion," Renewable Energy, Elsevier, vol. 169(C), pages 379-403.
    9. Ziółkowski, Paweł & Stasiak, Kamil & Amiri, Milad & Mikielewicz, Dariusz, 2023. "Negative carbon dioxide gas power plant integrated with gasification of sewage sludge," Energy, Elsevier, vol. 262(PB).
    10. Hao Luo & Lukasz Niedzwiecki & Amit Arora & Krzysztof Mościcki & Halina Pawlak-Kruczek & Krystian Krochmalny & Marcin Baranowski & Mayank Tiwari & Anshul Sharma & Tanuj Sharma & Zhimin Lu, 2020. "Influence of Torrefaction and Pelletizing of Sawdust on the Design Parameters of a Fixed Bed Gasifier," Energies, MDPI, vol. 13(11), pages 1-19, June.
    11. Vera Marcantonio & Marcello De Falco & Enrico Bocci, 2022. "Non-Thermal Plasma Technology for CO 2 Conversion—An Overview of the Most Relevant Experimental Results and Kinetic Models," Energies, MDPI, vol. 15(20), pages 1-18, October.
    12. Kowalczyk, Tomasz & Badur, Janusz & Ziółkowski, Paweł, 2020. "Comparative study of a bottoming SRC and ORC for Joule–Brayton cycle cooling modular HTR exergy losses, fluid-flow machinery main dimensions, and partial loads," Energy, Elsevier, vol. 206(C).
    13. Ioannis Avagianos & Dimitrios Rakopoulos & Sotirios Karellas & Emmanouil Kakaras, 2020. "Review of Process Modeling of Solid-Fuel Thermal Power Plants for Flexible and Off-Design Operation," Energies, MDPI, vol. 13(24), pages 1-41, December.
    14. Peltola, Petteri & Saari, Jussi & Tynjälä, Tero & Hyppänen, Timo, 2020. "Process integration of chemical looping combustion with oxygen uncoupling in a biomass-fired combined heat and power plant," Energy, Elsevier, vol. 210(C).
    15. Tadeáš Ochodek & Emmanouil Karampinis & Artur Pozarlik, 2022. "Contemporary Problems in Combustion—Fuels, Their Valorisation, Emissions, Flexibility and Auxiliary Systems," Energies, MDPI, vol. 15(5), pages 1-4, February.
    16. Paweł Ziółkowski & Stanisław Głuch & Piotr Józef Ziółkowski & Janusz Badur, 2022. "Compact High Efficiency and Zero-Emission Gas-Fired Power Plant with Oxy-Combustion and Carbon Capture," Energies, MDPI, vol. 15(7), pages 1-39, April.
    17. Adam Dominiak & Artur Rusowicz, 2022. "Change of Fossil-Fuel-Related Carbon Productivity Index of the Main Manufacturing Sectors in Poland," Energies, MDPI, vol. 15(19), pages 1-14, September.
    18. Wenxiao Chu & Maria Vicidomini & Francesco Calise & Neven Duić & Poul Alborg Østergaard & Qiuwang Wang & Maria da Graça Carvalho, 2022. "Recent Advances in Low-Carbon and Sustainable, Efficient Technology: Strategies and Applications," Energies, MDPI, vol. 15(8), pages 1-30, April.
    19. Fan, Jinyang & Liu, Wei & Jiang, Deyi & Chen, Junchao & Ngaha Tiedeu, William & Chen, Jie & JJK, Deaman, 2018. "Thermodynamic and applicability analysis of a hybrid CAES system using abandoned coal mine in China," Energy, Elsevier, vol. 157(C), pages 31-44.
    20. Roberto Pili & Hartmut Spliethoff & Christoph Wieland, 2017. "Dynamic Simulation of an Organic Rankine Cycle—Detailed Model of a Kettle Boiler," Energies, MDPI, vol. 10(4), pages 1-28, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:19:p:6304-:d:649035. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.